Browse > Article
http://dx.doi.org/10.7847/jfp.2020.33.1.015

Neobenedenia girellae infection of aquarium-raised snubnose pompano (Trachinotus blochii) in Korea  

Nam, U-Hwa (Department of Marine Bioscience, Gangneung-Wonju National University)
Seo, Hyun-Joon (Department of Marine Bioscience, Gangneung-Wonju National University)
Hwang, Ilson (Marine Biodiversity Institute of Korea)
Kim, Jeong-Ho (Department of Marine Bioscience, Gangneung-Wonju National University)
Publication Information
Journal of fish pathology / v.33, no.1, 2020 , pp. 15-21 More about this Journal
Abstract
We found skin flukes in snubnose pompano (Trachinotus blochii) from a public aquarium and attempted clear identification of them to the species level by morphology and molecular analyses. Skin flukes were collected from snubnose pompano showing dyspnea, anorexia and mild hemorrhage on the skin. All the fish samples (n=2) were infected with the flukes on the skin, gill and eyes, covered with excessive mucus. The isolated worms were transferred for making slide specimen and PCR amplification targeting 18S rDNA, 28S rDNA, mitochondrial cytochrome c oxidase subunit 1 (mt cox1) and cytochrome b (Cytb) genes for further analyses. Morphology and measurements data of our slide specimen coincided with those of Neobenedenia girellae. The sequence data of 2 genes (28S rDNA and Cytb) and the phylogenetic trees revealed that our specimen consistently belonged to the N. girellae clade. For 18S rDNA and mt cox1 genes, there was no sequence of either of these 2 Neobenedenia species from the type host available in GenBank. This is the first record of N. girellae in snubnose pompano, but it is still unclear if the snubnose pompano is a natural host for N. girellae or not because N. girellae is known to have an unusual broad host range and the host-switching can occur particularly in captive conditions such as aquarium or aquaculture facilities.
Keywords
Neobenedenia girellae; skin fluke; monogenean; capsalidae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdul Nazar, A.K., Jayakumar, R., Tamilmani, G., Sakthivel, M., Kalidas, C., Ramesh Kumar, P., Anbarasu, M., Sirajudeen, S., Balamurugan, V., Jayasinh, M. and Gopakumar, G. Larviculture and seed production of the silver pompano, Trachinotus blochii (Lacepede, 1801) for the first time in India. Indian J. Fish., 59: 83-87, 2012.
2 Badets, M., Whittington, I., Lalubin, F., Allienne, J., Maspimby, J., Bentz, S., Du Preez, L., Barton, D., Hasegawa, H., Tandon, V., Imkongwapang, R., Ohler, A., Combes, C. and Verneau, O.: Correlating early evolution of parasitic platyhelminthes to Gondwana breakup. Syst. Biol., 60: 762-781, 2011.   DOI
3 Bowles, J., Blair, D. and McManus, D.P.: A molecular phylogeny of the human schistosomes. Mol. Phylogenet. Evol., 4: 103-9, 1995.   DOI
4 Brazenor, A.K., Bertozzi, T., Miller, T.L., Whittington, I.D. and Hutson, K.S.: DNA profiling reveals Neobenedenia girellae as the primary parasitic monogenean in global fisheries and aquaculture. Mol. Phylogenet. Evol., 129: 130-137, 2018a.   DOI
5 Brazenor, A.K., Saunders, R.J., Miller, T.L. and Hutson, K.S.: Morphological variation in the cosmopolitan fish parasite Neobenedenia girellae (Capsalidae: Monogenea). Int. J. Parasitol., 48: 125-134, 2018b.   DOI
6 Bullard, S.A., Benz, G.W., Overstreet, R.M., Williams, Jr. E.H. and Hemdal, J.: Six new host records and an updated list of wild hosts for Neobenedenia melleni (MacCallum) (Monogenea: Capsalidae). Comp. Parasitol., 67: 190-196, 2000.
7 Hassouna, N., Michot, B. and Bachellerie, J.P.: The complete nucleotide sequence of mouse 28 S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res., 12: 3563-3583, 1984.   DOI
8 Kumar, S., Stecher, G. and Tamura, K.: MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33: 1870-1874, 2016.   DOI
9 Littlewood, D.T.J., Rhode, K. and Clough, K.A.: Parasite speciation within or between host species?-Phylogenetic evidence from site-specific polystome monogeneans. Int. J. Parasitol., 27: 1289-1297, 1997.   DOI
10 Ogawa, K., Bondad-Reantaso, M.G., Fukudome, M. and Wakabayashi, H.: Neobenedenia girellae (Hargis, 1955) Yamaguti, 1963 (Monogenea: Capsalidae) from cultured marine fishes of Japan. J. Parasitol., 81: 223-227, 1995.   DOI
11 Ogawa, K., Miyamoto, J., Wang, H.-C., Lo, C.-F. and Kou, G.-S.: Neobenedenia girellae (Monogenea) infection of cultured cobia Rachycentron canadum in Taiwan. Fish Pathol., 41: 51-56, 2006.   DOI
12 Perkins, E.M., Donnellan, S.C., Bertozzi, T., Chisholm, L.A. and Whittington, I.D.: Looks can deceive: Molecular phylogeny of a family of flatworm ectoparasites (Monogenea: Capsalidae) does not reflect current morphological classification. Mol. Phylogenet. Evol., 52: 705-714, 2009.   DOI
13 Sepulveda, F.A. and Gonzalez, M.T.: Molecular and morphological analyses reveal that the pathogen Benedenia seriolae (Monogenea: Capsalidae) is a complex species: Implications for yellowtail Seriola spp. aquaculture. Aquaculture, 418-419:94-100, 2014.   DOI
14 Whittington, I.D. and Horton, M.A.: A revision of Neobenedenia Yamaguti, 1963 (Monogenea: Capsalidae) including a redescription of N. melleni (MacCallum, 1927) Yamaguti, 1963. J. Nat. History., 30: 1113-1156, 1996.   DOI
15 Thompson, J.D., Higgins, D.G. and Gibson, T.J.: CLU-STAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22:4673-4680, 1994.   DOI
16 Trujillo-Gonzalez, A., Johnson, L.K., Constantinoiu, C. C. and Hutson, K.S.: Histopathology associated with haptor attatchment of the ectoparasitic monogenean Neobenedenia sp. (Capsalidae) to barramundi, Lates calcarifer (Bloch). J. Fish Dis., 38: 1063-1067, 2015.   DOI
17 Whittington, I.D.: The Capsalidae (Monogenea: Monopisthocotylea): a review of diversity, classification and phylogeny with a note about species complex. Folia Parasitol., 51: 109-122, 2004.   DOI