Browse > Article
http://dx.doi.org/10.7847/jfp.2017.30.2.071

Effects of substitution of viral hemorrhagic septicemia virus genotype IVa glycoprotein with vesicular stomatitis virus (VSV) glycoprotein on cell line preference  

Kim, Min Sun (Graduate School of Integrated Bioindustry, Sejong University)
Choi, Tae-Jin (Department of Microbiology, Pukyong National University)
Kim, Ki Hong (Department of Aquatic Life Medicine, Pukyong National University)
Publication Information
Journal of fish pathology / v.30, no.2, 2017 , pp. 71-78 More about this Journal
Abstract
The glycoprotein of novirhabdoviruses is known to play a critical role in the determination of host specificity. Viral hemorrhagic septicemia viruses (VHSVs) in different genotypes have different glycoprotein sequences and show different preferences for specific cell lines. In this study, to know whether the glycoprotein is solely responsible for the host cell preference of VHSV, a recombinant VHSV expressing vesicular stomatitis virus (VSV) glycoprotein instead of VHSV IVa glycoprotein (rVHSV-VSV-G) was generated by reverse genetics and inoculated into several fish cell lines, then, cytopathic effect (CPE) and viral growth caused by rVHSV-VSV-G infection were compared with those caused by rVHSV-wild that was previously generated and has the same genomic sequence with wild-type VHSV except a few nucleotides. The plaque numbers of rVHSV-VSV-G were significantly higher in EPC, BF-2 and GF cells than those of rVHSV-wild. However, in HINAE cells (originated from olive flounder), rVHSV-VSV-G titer was significantly lower than rVHSV-wild titer, and both recombinant VHSVs were not grown well in CHSE-214 cells. Although statistical significances were detected in the titers between rVHSV-wild and rVHSV-VSV-G in several cell lines, the cell line-preference order of rVHSV-VSV-G was not different from that of rVHSV-wild. These results suggest that the replacement of VHSV glycoprotein may not completely change host cell preference, and other regions of VHSV might also involve in the determination of host cell preference.
Keywords
Viral hemorrhagic septicemia virus IVa; Vesicular stomatitis virus; Glycoprotein substitution; Cell line preference;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Burke, J. A., & Mulcahy, D. (1980) Plaquing procedure for infectious hematopoietic necrosis virus. Applied and Environmental Microbiology 39, 872-876.
2 Kim, M. S., Kim, D. S., & Kim, K. H. (2011) Generation and characterization of NV gene-knockout recombinant viral hemorrhagic septicemia virus (VHSV) genotype IVa. Diseases of Aquatic Organisms 97, 25-35.   DOI
3 Kim, W. S., Kim, S. R., Kim, D., Kim, J. O., Park, M. A., Kitamura, S. I., et al. (2009) An outbreak of VHSV (viral hemorrhagic septicemia virus) infection in farmed olive flounder Paralichthys olivaceus in Korea. Aquaculture 296, 165-168.   DOI
4 Kuzmin, I. V., Novella, I. S., Dietzgen, R. G., Padhi, A., & Rupprecht, C. E. (2009) The rhabdoviruses: biodiversity, phylogenetics, and evolution. Infection, Genetics and Evolution 9, 541-553.   DOI
5 Langevin, C., Jaaro, H., Bressanelli, S., Fainzilber, M., & Tuffereau, C. (2002) Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. Journal of Biological Chemistry 277, 37655-37662.   DOI
6 Letchworth, G. J., Rodriguez, L. L., Del cbarrera, J. (1999) Vesicular stomatitis. The Veterinary Journal 157, 239-260.   DOI
7 Lorenzen, E., Carstensen, B., & Olesen, N. J. (1999) Inter-laboratory comparison of cell lines for susceptibility to three viruses: VHSV, IHNV and IPNV. Diseases of Aquatic Organisms 37, 81-88.   DOI
8 Matsubara, T., Beeman, R. W., Shike, H., Besansky, N. J., Mukabayire, O., Higgs, S., James, A. A., & Burns, J. C. (1996) Pantropic retroviral vectors integrate and express in cells of the malaria mosquito, Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America 93, 6181-6185.   DOI
9 McAllister, P. E. (1997) Communications: Susceptibility of 12 lineages of chinook salmon embryo cells (CHSE-214) to four viruses from salmonid fish: Implications for clinical assay sensitivity. Journal of Aquatic Animal Health 9, 291-294.   DOI
10 Olesen, N. J., & Vestergard Jorgensen, P. E. (1992) Comparative susceptibility of three fish cell lines to Egtved virus, the virus of viral haemorrhagic septicaemia (VHS). Diseases of Aquatic Organisms 12, 235-237.   DOI
11 Que, X., Kim, D., Alagon, A., Hirata, K., Shike, H., Shimizu, C., Gonzalez, A., Burns, J. C., & Reed, S. L. (1999) Pantropic retroviral vectors mediate gene transfer and expression in Entamoeba histolytica. Molecular and Biochemical Parasitology 99, 237-245   DOI
12 Rose, J. K., & Whitt, M. A. (2001) Rhabdoviridae: The viruses and their replication. In Fields Virology, 4th ed.: Lippincott-Raven Publishers, Philadelphia, PA, USA, pp. 1221-1224.
13 Sandlund, N., Gjerset, B., Bergh, O., Modahl, I., Olesen, N. J., & Johansen, R. (2014) Screening for viral hemorrhagic septicemia virus in marine fish along the Norwegian coastal line. PLoS ONE 9, e108529.   DOI
14 Schlegel, R., & Wade, M. (1983) Neutralized vesicular stomatitis virus binds to host cells by a different "receptor". Biochemical and Biophysical Research Communications 114, 774-778.   DOI
15 Schlegel, R., Tralka, T. S., Willingham, M. C., & Pastan, I. (1983) Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site? Cell 32, 639-646.   DOI
16 Schloemer, R. H., & Wagner, R. R. (1975) Cellular adsorption function of the sialoglycoprotein of vesicular stomatitis virus and its neuraminic acid. Journal of Virology 15, 882-893.
17 Skall, H. F., Olesen, N. J., & Mellergaard, S. (2005) Viral haemorrhagic septicaemia virus in marine fish and its implications for fish farming - a review. Journal of Fish Diseases 28, 509-529.   DOI
18 Dixon, P. F. (1999) VHSV came from the marine environment: Clues from the literature, or just red herrings? Bulletin of the European Association of Fish Pathologists 19, 60-65.
19 Coil, D. A., & Miller, A. D. (2004) Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. Journal of Virology 78, 10920-10926.   DOI
20 Davidson, B. L., & Breakefield, X. O. (2003) Viral vectors for gene delivery to the nervous system. Nature Reviews Neuroscience 4, 353-364.   DOI
21 Einer-Jensen, K., Ahrens, P., Forsberg, R., & Lorenzen, N. (2004) Evolution of the fish rhabdovirus viral haemorrhagic septicaemia virus. Journal of General Virology 85, 1167-1179.   DOI
22 Farley, D. C., Iqball, S., Smith, J. C., Miskin, J. E., Kingsman, S. M., & Mitrophanous, K. A. (2007) Factors that influence VSV-G pseudotyping and transduction efficiency of lentiviral vectors-in vitro and in vivo implications. Journal of Gene Medicine 9, 345-356.   DOI
23 Finkelshtein, D., Werman, A., Novick, D., Barak, S., & Rubinstein, M. (2013) LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proceedings of the National Academy of Sciences of the United States of America 110, 7306-7311.   DOI
24 Foley, H.D., Otero, M., Orenstein, J. M., Pomerantz, R. J., & Schnell, M. J. (2002) Rhabdovirus-based vectors with human immunodeficiency virus type 1 (HIV-1) envelopes display HIV-1-like tropism and target human dendritic cells. Journal of Virology 76, 19-31.   DOI
25 Hogenhout, S. A., Redinbaugh, M. G., & Ammar, El-D. (2003) Plant and animal rhabdovirus host range: a bug's view. Trends in Microbiology 11, 264-271.   DOI
26 Albertini, A. A. V., Baquero, E., Ferlin, A., & Gaudin, Y. (2012) Molecular and cellular aspects of rhabdovirus entry. Viruses 4, 117-139.   DOI
27 Snow, M,, Bain, N., Black, J., Taupin, V., Cunningham, C. O., King, J. A., Skall, H. F., & Raynard, R. S. (2004) Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Diseases of Aquatic Organisms 61, 11-21.   DOI
28 Willnow, T. E. (1999) The low-density lipoprotein receptor gene family: Multiple roles in lipid metabolism. Journal of Molecular Medicine 77, 306-315.   DOI
29 Yamada, S., & Ohnishi, S. (1986) Vesicular stomatitis virus binds and fuses with phospholipid domain in target cell membranes. Biochemistry 25, 3703-3708.   DOI
30 Yee, J. K., Friedmann, T., & Burns, J. C. (1994) Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods in Cell Biology 43A, 99-112.
31 Bearzotti, M., Delmas, B., Lamoureux, A., Loustau, A. M., Chilmonczyk, S., & Bremont, M. (1999) Fish rhabdovirus cell entry is mediated by fibronectin. Journal of Virology 73, 7703-7709.
32 Boulo, V., Cadoret, J. P., Shike, H., Shimizu, C., Miyanohara, A., & Burns, J. C. (2000) Infection of cultured embryo cells of the pacific oyster, Crassostrea gigas, by pantropic retroviral vectors. In Vitro Cellular & Developmental Biology-Animal 36, 395-399.   DOI