Browse > Article
http://dx.doi.org/10.19066/cogsci.2021.32.3.002

The Influence of Change Prevalence on Visual Short-Term Memory-Based Change Detection Performance  

Son, Han-Gyeol (Department of Psychology, Chung-Ang University)
Hyun, Joo-Seok (Department of Psychology, Chung-Ang University)
Publication Information
Korean Journal of Cognitive Science / v.32, no.3, 2021 , pp. 117-139 More about this Journal
Abstract
The way of change detection in which presence of a different item is determined between memory and test arrays with a brief in-between time interval resembles how visual search is done considering that the different item is searched upon the onset of a test array being compared against the items in memory. According to the resemblance, the present study examined whether varying the probability of change occurrence in a visual short-term memory-based change detection task can influence the aspect of response-decision making (i.e., change prevalence effect). The simple-feature change detection task in the study consisted of a set of four colored boxes followed by another set of four colored boxes between which the participants determined presence or absence of a color change from one box to the other. The change prevalence was varied to 20, 50, or 80% in terms of change occurrences in total trials, and their change detection errors, detection sensitivity, and their subsequent RTs were analyzed. The analyses revealed that as the change prevalence increased, false alarms became more frequent while misses became less frequent, along with delayed correct-rejection responses. The observed change prevalence effect looks very similar to the target prevalence effect varying according to probability of target occurrence in visual search tasks, indicating that the background principles deriving these two effects may resemble each other.
Keywords
change detection; visual search; target prevalence; visual short-term memory; change prevalence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Palmer, J., Verghese, P., & Pavel, M. (2000). The psychophysics of visual search. Vision Research, 40, 1227-1268.   DOI
2 강해인, 현주석 (2011). 시각작업기억 처리 단계에 따른 주의 자원 활용 특성. 한국심리학회지: 인지 및 생물, 23(4), 487-504.
3 박형범, 손한결, 현주석 (2015). 표적 출현확률에 따른 시각탐색 정보처리 특성 인지과학, 26(3), 357-375.
4 Beanland, V., Le, R. K., & Byrne, J. E. M. (2016). Object-scene relationships vary the magnitude of target prevalence effects in visual search. Journal of Experimental Psychology: Human Perception and Performance, 42(6), 766-775.   DOI
5 Bunting, M. (2006). Proactive interference and item similarity in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(2), 183-196.   DOI
6 Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-185.   DOI
7 Duncan, J., & Humphreys, G. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433-458.   DOI
8 Eckstein, M. P., Thomas, J. P., Palmer, J., & Shimozaki, S. S. (2000). A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Perception and Psychophysics, 62, 425-451.   DOI
9 Girden, E. (1992). ANOVA: Repeated mesures. Newbury Park: CA: Sage.
10 Ishibashi, K., Kita, S., & Wolfe, J. M. (2011). The effects of local prevalence and explicit expectations on search termination times. Attention, Perception & Psychophysics, 74, 115-123.   DOI
11 Lau, J. S. H., & Haung, L. (2010). The prevalence effect is determined by past experience, not future prospects. Vision Research, 50(15), 1469-1474.   DOI
12 Macmillan, N. A. (1993). Singal detection theory as data analysis method and psychological decision model.
13 Rensink, R. A., O'Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8(5), 368-373.   DOI
14 Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137-149.   DOI
15 Godwin, H. J., Walenchok, S. C., Houpt, J. W., & Hout, M. C. (2015). Faster than the speed of rejection: Object identification processes during visual search for multiple targets. Journal of Experimental Psychology: Human Perception & Performance, 41(4), 1007-1020.   DOI
16 Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by information load and by number of objects. Psychological Science, 15(2), 106-111.   DOI
17 Harvey Jr., L. O. (2003). Detection sensitivity and response bias. Department of Psychology, University of Colorado. https://doi.org/10.1093/acprof:oso/9780195092509.001.0001
18 현주석 (2017). 시각작업기억 연구를 위한 변화탐지 과제의 방법론적 제약 및 이론적 시사점에 대한 고찰. 한국심리학회지: 인지 및 생물, 29(3), 287-373.
19 Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53, 245-277.   DOI
20 Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2), 324-330.   DOI
21 Schankin, A., Bergmann, K., Schubert, A.-L., & Hagemann, D. (2017). The allocation of attention in change detection and change blindness. Journal of Psychophysiology, 31(3), 94-106.   DOI
22 Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1436-1451.   DOI
23 Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202-238.   DOI
24 Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), Attention (pp. 13-73). Hove, England UK: Psychology Press/Erlbaum (Uk) Taylor & Francis.
25 Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435, 439-440.   DOI
26 Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136, 623-638.   DOI
27 Wolfe, J. M., & Van Wert, M. J. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20(2), 121-124.   DOI
28 Woodman, G. F., & Chun, M. M. (2006). The role of working memory long-term memory in visual search. Visual Cognition, 14(4-8), 808-830.   DOI
29 Schwark, J., Sandray, J., & Dolgov, I. (2013). Evidence for a Positive Relationship between Working-Memory Capacity and Detection of Low-Prevalence Targets in Visual Search. Perception, 42(1), 112-114.   DOI
30 Webster, M. A. (2015). Visual adaptation. Annual Review of Vision Science, 1, 547-567.   DOI
31 Gur, D., Rockette, H. E., Armfield, D. R., Blachar, A., Bogan, J. K., Brancetelli, G., . . . Warfel, T. E. (2003). The prevalence effect in a laboratory environment. Radiology, 228, 10-14.   DOI
32 Hyun, J.-S., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1140-1160.   DOI
33 Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28-71.   DOI
34 Chun, M. M., & Wolfe, J. M. (1996). Just say no: How are visual searches terminated when there is no target present? Cognitive Psychology, 30(1), 39-78.   DOI
35 Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in a correctable search. Psychological Science, 18(11), 943-947.   DOI
36 Gepshtein, S., Lesmes, L. A., & Albright, T. D. (2013). Sensory adaptation as optimal resource allocation. Procedings of the National Academy of Sciences, 110(11), 4368-4373.   DOI
37 Godwin, H. J., Menneer, T., Cave, K. R., Thaibsyah, M., & Donnelly, N. (2010). Dual-target search for high and low prevalence X-ray threat targets. Visual Cognition, 18(10), 1439-1463.   DOI
38 Godwin, H. J., Menneer, T., Cave, K. R., Thaibsyah, M., & Donnelly, N. (2014). The effects of increasing target prevalence on information processing during visual search. Psychonomic Bulletin & Review, 22(2), 469-475.   DOI
39 Hartshorne, J. K. (2008). Visual working memory capacity and proactive interference. PLoS One, 3(7): e2716. Retrieved from https://doi.org/10.1371/journal.pone.0002716   DOI
40 Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 388-403.   DOI
41 Jiang, Y., Zhou, K., & He, S. (2007). Human visual cortex responds to invisible chromatic flicker. Nature Neuroscience, 10, 657-662.   DOI
42 Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive interference and divided attention: Limits on long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory & Cognition, 26(2), 336-358.   DOI
43 Luck, S. J. (2008). Visual short-term memory. In S. J. Luck & A. Hollingworth (Eds.), Visual Memory: Oxford University Press.
44 Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.   DOI
45 Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user's guide: Psychology Press.
46 O'Regan, J. K., Rensink, R. A., & Clark, J. J. (1999). Change-blindness as a result of "mudsplashes". Nature, 398(6722), 34.   DOI
47 Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12, 287-292.   DOI
48 Rensink, R. A. (2000). Visual search for change: A probe into the nature of attentional processing. Visual Cognition, 7, 345-376.   DOI
49 Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & Wolfe, J. M. (2008). Why do we miss rare targets? Exploring the boundaries of the low prevalence effect. Journal of Vision, 8(15), 1-17.
50 Simons, D. J., & Rensink, R. A. (2005). Change blindness: Past, present, and future. Trends in Cognitive Sciences, 9(1), 16-20.   DOI
51 Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions and objects in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 27(1), 92-114.   DOI
52 von Grunau, M. W., Faubert, J., lordanova, M., & Rajska, D. (1999). Flicker and the efficiency of cues for capturing attention. Vision Research, 39(19), 3241-3252.   DOI
53 Webster, M. A. (2012). Evolving concepts of sensory adaptation. F1000 Biology Reports, 4, 21. Retrieved from https://doi.org/10.3410/B4-21   DOI
54 Wickens, T. D. (2002). Elementary signal detection theory. U.S.A.: Oxford University Press.
55 Duncan, J. (1985). Visual search and selective attention. In M. I. P. a. O. S. M. Marin (Ed.), Attention and Performance (Vol. XI, pp. 85-106). Hillsdale: Erlbaum.
56 van Lamsweerde, A. E., & Beck, M. R. (2011). The change probability effect: Incidental learning, adaptability, and shared visual working memory resources. Consciousness & Cognition, 20(4), 1676-1689.   DOI
57 Vickery, T. J., King, L.-W., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5, 81-92.
58 Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500-503.   DOI