1 |
Palmer, J., Verghese, P., & Pavel, M. (2000). The psychophysics of visual search. Vision Research, 40, 1227-1268.
DOI
|
2 |
강해인, 현주석 (2011). 시각작업기억 처리 단계에 따른 주의 자원 활용 특성. 한국심리학회지: 인지 및 생물, 23(4), 487-504.
|
3 |
박형범, 손한결, 현주석 (2015). 표적 출현확률에 따른 시각탐색 정보처리 특성 인지과학, 26(3), 357-375.
|
4 |
Beanland, V., Le, R. K., & Byrne, J. E. M. (2016). Object-scene relationships vary the magnitude of target prevalence effects in visual search. Journal of Experimental Psychology: Human Perception and Performance, 42(6), 766-775.
DOI
|
5 |
Bunting, M. (2006). Proactive interference and item similarity in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(2), 183-196.
DOI
|
6 |
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-185.
DOI
|
7 |
Duncan, J., & Humphreys, G. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433-458.
DOI
|
8 |
Eckstein, M. P., Thomas, J. P., Palmer, J., & Shimozaki, S. S. (2000). A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Perception and Psychophysics, 62, 425-451.
DOI
|
9 |
Girden, E. (1992). ANOVA: Repeated mesures. Newbury Park: CA: Sage.
|
10 |
Ishibashi, K., Kita, S., & Wolfe, J. M. (2011). The effects of local prevalence and explicit expectations on search termination times. Attention, Perception & Psychophysics, 74, 115-123.
DOI
|
11 |
Lau, J. S. H., & Haung, L. (2010). The prevalence effect is determined by past experience, not future prospects. Vision Research, 50(15), 1469-1474.
DOI
|
12 |
Macmillan, N. A. (1993). Singal detection theory as data analysis method and psychological decision model.
|
13 |
Rensink, R. A., O'Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8(5), 368-373.
DOI
|
14 |
Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137-149.
DOI
|
15 |
Godwin, H. J., Walenchok, S. C., Houpt, J. W., & Hout, M. C. (2015). Faster than the speed of rejection: Object identification processes during visual search for multiple targets. Journal of Experimental Psychology: Human Perception & Performance, 41(4), 1007-1020.
DOI
|
16 |
Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by information load and by number of objects. Psychological Science, 15(2), 106-111.
DOI
|
17 |
Harvey Jr., L. O. (2003). Detection sensitivity and response bias. Department of Psychology, University of Colorado. https://doi.org/10.1093/acprof:oso/9780195092509.001.0001
|
18 |
현주석 (2017). 시각작업기억 연구를 위한 변화탐지 과제의 방법론적 제약 및 이론적 시사점에 대한 고찰. 한국심리학회지: 인지 및 생물, 29(3), 287-373.
|
19 |
Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53, 245-277.
DOI
|
20 |
Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2), 324-330.
DOI
|
21 |
Schankin, A., Bergmann, K., Schubert, A.-L., & Hagemann, D. (2017). The allocation of attention in change detection and change blindness. Journal of Psychophysiology, 31(3), 94-106.
DOI
|
22 |
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1436-1451.
DOI
|
23 |
Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202-238.
DOI
|
24 |
Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), Attention (pp. 13-73). Hove, England UK: Psychology Press/Erlbaum (Uk) Taylor & Francis.
|
25 |
Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435, 439-440.
DOI
|
26 |
Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136, 623-638.
DOI
|
27 |
Wolfe, J. M., & Van Wert, M. J. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20(2), 121-124.
DOI
|
28 |
Woodman, G. F., & Chun, M. M. (2006). The role of working memory long-term memory in visual search. Visual Cognition, 14(4-8), 808-830.
DOI
|
29 |
Webster, M. A. (2015). Visual adaptation. Annual Review of Vision Science, 1, 547-567.
DOI
|
30 |
Schwark, J., Sandray, J., & Dolgov, I. (2013). Evidence for a Positive Relationship between Working-Memory Capacity and Detection of Low-Prevalence Targets in Visual Search. Perception, 42(1), 112-114.
DOI
|
31 |
Gur, D., Rockette, H. E., Armfield, D. R., Blachar, A., Bogan, J. K., Brancetelli, G., . . . Warfel, T. E. (2003). The prevalence effect in a laboratory environment. Radiology, 228, 10-14.
DOI
|
32 |
Hyun, J.-S., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1140-1160.
DOI
|
33 |
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28-71.
DOI
|
34 |
Chun, M. M., & Wolfe, J. M. (1996). Just say no: How are visual searches terminated when there is no target present? Cognitive Psychology, 30(1), 39-78.
DOI
|
35 |
Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in a correctable search. Psychological Science, 18(11), 943-947.
DOI
|
36 |
Gepshtein, S., Lesmes, L. A., & Albright, T. D. (2013). Sensory adaptation as optimal resource allocation. Procedings of the National Academy of Sciences, 110(11), 4368-4373.
DOI
|
37 |
Godwin, H. J., Menneer, T., Cave, K. R., Thaibsyah, M., & Donnelly, N. (2010). Dual-target search for high and low prevalence X-ray threat targets. Visual Cognition, 18(10), 1439-1463.
DOI
|
38 |
Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 388-403.
DOI
|
39 |
Godwin, H. J., Menneer, T., Cave, K. R., Thaibsyah, M., & Donnelly, N. (2014). The effects of increasing target prevalence on information processing during visual search. Psychonomic Bulletin & Review, 22(2), 469-475.
DOI
|
40 |
Hartshorne, J. K. (2008). Visual working memory capacity and proactive interference. PLoS One, 3(7): e2716. Retrieved from https://doi.org/10.1371/journal.pone.0002716
DOI
|
41 |
Jiang, Y., Zhou, K., & He, S. (2007). Human visual cortex responds to invisible chromatic flicker. Nature Neuroscience, 10, 657-662.
DOI
|
42 |
Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive interference and divided attention: Limits on long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory & Cognition, 26(2), 336-358.
DOI
|
43 |
Luck, S. J. (2008). Visual short-term memory. In S. J. Luck & A. Hollingworth (Eds.), Visual Memory: Oxford University Press.
|
44 |
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.
DOI
|
45 |
Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user's guide: Psychology Press.
|
46 |
O'Regan, J. K., Rensink, R. A., & Clark, J. J. (1999). Change-blindness as a result of "mudsplashes". Nature, 398(6722), 34.
DOI
|
47 |
Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12, 287-292.
DOI
|
48 |
Simons, D. J., & Rensink, R. A. (2005). Change blindness: Past, present, and future. Trends in Cognitive Sciences, 9(1), 16-20.
DOI
|
49 |
Rensink, R. A. (2000). Visual search for change: A probe into the nature of attentional processing. Visual Cognition, 7, 345-376.
DOI
|
50 |
Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & Wolfe, J. M. (2008). Why do we miss rare targets? Exploring the boundaries of the low prevalence effect. Journal of Vision, 8(15), 1-17.
|
51 |
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions and objects in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 27(1), 92-114.
DOI
|
52 |
von Grunau, M. W., Faubert, J., lordanova, M., & Rajska, D. (1999). Flicker and the efficiency of cues for capturing attention. Vision Research, 39(19), 3241-3252.
DOI
|
53 |
Webster, M. A. (2012). Evolving concepts of sensory adaptation. F1000 Biology Reports, 4, 21. Retrieved from https://doi.org/10.3410/B4-21
DOI
|
54 |
Wickens, T. D. (2002). Elementary signal detection theory. U.S.A.: Oxford University Press.
|
55 |
Duncan, J. (1985). Visual search and selective attention. In M. I. P. a. O. S. M. Marin (Ed.), Attention and Performance (Vol. XI, pp. 85-106). Hillsdale: Erlbaum.
|
56 |
van Lamsweerde, A. E., & Beck, M. R. (2011). The change probability effect: Incidental learning, adaptability, and shared visual working memory resources. Consciousness & Cognition, 20(4), 1676-1689.
DOI
|
57 |
Vickery, T. J., King, L.-W., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5, 81-92.
|
58 |
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500-503.
DOI
|