Browse > Article
http://dx.doi.org/10.19066/cogsci.2020.31.4.001

Parafovea Information Processing of Adults and Adolescents in Reading: Diffusion Model Analysis on Distributions of Eye Fixation Durations  

Choo, Hyeree (Cognitive Program, Seoul National University)
Koh, Sungryong (Cognitive Program, Seoul National University)
Publication Information
Korean Journal of Cognitive Science / v.31, no.4, 2020 , pp. 103-136 More about this Journal
Abstract
This study compares the parafovea preview effect of adolescent group and adult group with different ages using eye tracking experiment. Also, this study confirms that the starting point parameter of the one boundary diffusion model can explain the data obtained through eye tracking experiments. In two experiments, parafoveal information processing was examined using the boundary technique. In Experiment 1, reading times were compared between the conditions given high frequency words preview versus masking preview. In Experiment 2, the condition in which low frequency words were given to parafovea preview information and the condition in which parafovea preview was masked were compared. We found that both the adolescent group and the adult group showed a parafovea preview effect. Also, first fixation, single fixation, and gaze duration of the two groups were different based on the word property shown in the parafovea. The first fixation data obtained in the two experiments were divided into quantiles and fitted into one boundary diffusion model. From the results, we argue that the parafovea preview information processing in the reading was described as the starting point parameter of the one boundary diffusion model.
Keywords
eye movement tracking; reading; parafovea processing; distribution analysis; diffusion model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ratcliff, R. & Strayer, D. (2013). Modeling simple driving tasks with a one boundary diffusion model. Psychonomic bulletin & review, 21( 3), 577-589.   DOI
2 Ratcliff, R. & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to the contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438-481.   DOI
3 Rayner, K., Reichle, E. D., Stroud, M. J., Williams, C. C., & Pollatsek, A. (2006). The effect of word frequency, word predictability, and font difficulty on the eye movements of young and older readers. Psychology and Aging, 21, 448-465.   DOI
4 Ratcliff, R. & Van Dongen, H. P. A. (2011). A diffusion model for one choice reaction time tasks and the cognitive effects of sleep deprivation. Proceedings of the National Academy of Sciences,108, 11285-11290.   DOI
5 Rayner, K. (1998) Eye Movements in reading and Information Processing: 20 Years of research. Psychological Bulletin, 124(3), 372-422.   DOI
6 Rayner, K. (2009). Eye movements and landing positions in reading: A retrospective. Perception, 38, 895-899   DOI
7 Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004). The effects of word frequency and predictability on eye movements in reading: Implications for the E-Z Reader model. Journal of Experimental Psychology: Human Perception and Performance, 30, 720-732.   DOI
8 Rayner,K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory & Cognition, 14(3), 191-201.   DOI
9 Rayner, K., & McConkie, G. W. (1976). What guides a reader's eye movements? Vision Research, 16, 829-837.   DOI
10 Andrews, S., & Heathcote, A. (2001). Distinguishing common and task specific processes in word identification: A matter of some moment? Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 514-544.   DOI
11 Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390-412.   DOI
12 Balota, D., & Chumbley, J. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage. Journal of Experimental Psychology: Human Perception and Performance, 10(3), 340-357.   DOI
13 Balota, D. A., & Spieler, D. H. (1999). Word-frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency. Journal of Experimental Psychology: General, 128, 32-55.   DOI
14 Bates, D., & Sarkar, D., the R Core team. (2007). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-85.
15 Rayner, K., Murphy, L., Henderson, J. M.. & Pollatsek, A. (1989). Selective attentional dyslexia. Cognitive Neuropsychology, 6, 357-378.   DOI
16 Rayner, K., & Pollatsek, A. (1981) Eye movement control during reading: Evidence for direct control. Quarterly Journal of Experimental Psychology, 33A, 351-373.   DOI
17 Rayner, K., Sereno, S.C., & Raney, G. E. (1996). Eye movement control in reading: A comparison of two types of models. Journal of Experimental Psychology: Human Perception and Performance, 22, 1188-1200.   DOI
18 Balota, D., Yap, M. & Cortese, M. (2006). Visual word recognition: the journey from features to meaning (a travel update). In In M. Traxler & M. A. Gernsbacher (Eds. Handbook of psycholinguistics (2nd edition).
19 Balota, D. A., Yap, M.J., Cortese, M.I, Watson, J.M. (2008). Beyond response latency: An RT distributional analysis of semantic priming. Journal of Memory & Language 59, 495-523.   DOI
20 Blanchard, H. E., Pollatsek, A., & Rayner, K. (1989). The acquisition of parafoveal word information in reading. Perception & Psychophysics, 46, 85-94.   DOI
21 Brown, G. D. A., & Watson, F. L. (1987). First in, first out: Word learning age and spoken word frequency as predictors of word familiarity and word naming latency. Memory & Cognition, 15, 208-216.   DOI
22 Adams, M. J. (1990). Beginning to Read: Thinking and Learning about Print. Cambridge, MA: Bolt, Beranek, and Newman, Inc. ED 317 950
23 고성룡, 윤소정, 민철홍, 최경순, 고선희, 황민아 (2012). 어린이 글 읽기에서 나타나는 안구 운동의 특징. 인지과학, 21(4), 481-503.
24 고성룡, 주혜리, 이다정 (2020). 확산모형 분석도구: SNUDM, Korean Journal of Cognitive Science, 31(1). 1-23.
25 고성룡, 횽효진, 윤소정, 조병환 (2008). 우리글 명사 어절에서의 단어 빈도 효과: 안구운동 추적 연구. 한국심리학회지: 실험, 20(1), 21-37.
26 민철홍 (2012). 우리글을 읽을 때 음운 정보의 효과 탐색, 서울대학교 석사학위논문.
27 이춘길 (2004). 한글을 읽는 시선의 움직임. 서울대학교 출판부.
28 주혜리(2015). 우리글 읽기에서 나타나는 고정시간 분포에 대한 확산모형 분석, 서울대학교 박사학위논문.
29 Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105, 125-157.   DOI
30 Reichle, E. D., Pollatsek, A. & Rayner, K. (2006). E-Z Reader: A cognitive-control, serial-attention model of eye-movement behavior during reading. Cognitive Systems Research, 7, 4-22.   DOI
31 Reichle, E. D., Rayner, K., & Pollatsek, A. (1999). Eye movement control in reading: Accounting for initial fixation locations and refixations within the E-Z reader model. Vision Research, 39, 4403-4411.   DOI
32 Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z Reader model of eye movement control in reading: Comparison to other models. Brain and Behavioral Sciences, 26, 445-476.   DOI
33 Revuz, D., and Yor, M. Continuous Martingales and Brownian Motion (Third Edition). Springer-Verlag, Berlin, 1999.
34 Seidenberg, M. S. and McClelland, J. L. (1989). A distributed, developmental Model of word recognition and naming. Psychological Review, 96, 523-568   DOI
35 Brown, S. D. & Heathcote, A. (2008).The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57 (3), 153-178   DOI
36 코마츠 요시타카(2017). 시선 추적을 통한 일본어 읽기에서 보이는 중심와주변의 의미처리 연구, 서울대학교 박사학위논문.
37 최소영 (2012). 안구운동추적기법을 활용한 읽기장애 연구의 도입과 전망: 국내 연구 현황을 중심으로. 학습장애연구, 9(1), 121-136
38 황지영 (2012). The Effect of Word Frequency and Masking on the distributions of Eye Fixation Durations, 서울대학교 석사학위논문.
39 Brown, S., Ratcliff, R., & Smith, P. L. (2006). Evaluating methods for approximating stochastic differential equations. Journal of Mathematical Psychology, 50, 402-410.   DOI
40 Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100, 432-459.   DOI
41 Carpenter, R. H. S. (2004). Contrast, probability, and saccadic latency: Evidence for independence of detection and decision. Current Biology, 14, 1576-1580.   DOI
42 Carpenter RHS, McDonald SA. (2006). LATER predicts saccade latency distributions in reading. Experimental Brain Research 177,176-83.   DOI
43 Chace, K. H., Rayner, K., & Well, A. D. (2005). Eye movements and phonological preview benefit: Effects of reading skill. Canadian Journal of Experimental Psychology, 59, 209-217.   DOI
44 Cuetos, F., Ellis, A. W., & Alvarez, B. (1999). Naming times for the Snodgrass and Vanderwart pictures in Spanish. Behavior Research Methods, Instruments and Computers, 31, 650-658.   DOI
45 Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior,19, 450-466.   DOI
46 Staub, A. (2011). The effect of lexical predictability on distributions of eye fixation durations. Psychon Bull Rev. 18, 371-376.   DOI
47 Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends in Neuroscience, 27, 161-168.   DOI
48 Snodgrass, J. G., & Yuditsky, T. (1996). Naming times for the Snodgrass and Vanderwart pictures. Behavior Research Methods, Instruments, & Computers, 28, 516-536.   DOI
49 Stanovich, K. E. (1986). Matthew Effects in Reading: Some Consequences of IndividualDifferences in the Acquisition of Literacy. Reading. Research Quarterly, 21(4), 360-407.   DOI
50 Staub, A. & Benatar. A. (2013). Individual differences in fixation duration distributions in reading.Psychonomic Bulletin & Review, 20, 1304-1311.   DOI
51 Duffy, S. A., Morris, R. K., Rayner, K. (1988). Lexical ambiguity and fixation times in reading. Journal of Memory and Language. 27(4), 429-446.   DOI
52 Daneman, M., & Carpenter, P. A. (1983). Individual differences in integratinginformation between and within sentences. Journal of ExperimentalPsychology: Learning, Memory, and Cognition, 9, 561-584.
53 Denbuurman, R., Roersema, T., & Gerrissen, J. F. (1981). Eye-Movements and the Perceptual Span in Reading. Reading Research Quarterly, 16, 227-235.   DOI
54 Drieghe, D., Rayner, K., & Pollatsek A. (2008). Mislocated fixations can account for parafoveal-on-foveal effects in eye movements during reading. Quarterly Journal of Psychology, 61, 1239-1249.
55 Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word recognition and eye movements during reading. Journal of Verbal Learning and Verbal Behavior, 20, 641-655.   DOI
56 Engbert, R., Nuthmann, A., Richter, E. M. & Kliegl, R. (2005). SWIFT: A Dynamical Model of Saccade Generation During Reading. Psychological Review,112(4), 777-813.   DOI
57 Usher, M., & McClelland, J. L. (2004). Loss aversion and inhibition in dynamical models of multialternative choice. Psychological Review, 111, 759-769.
58 Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin and Review, 7, 424-465.   DOI
59 Vervaat, W. (1979). A Relation between Brownian Bridge and Brownian Excursion. The Annuals of Probability, 7(1), 143-149.
60 Wagenmakers, E.-J., van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 4, 3-22.   DOI
61 Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 972-992.   DOI
62 Yap, M. J., & Balota, D. A. (2007). Additive and interactive effects on response time distributions in visual word recognition. Journal of Experimental Psychology: Learning, Memory, & Cognition 33, 274-296.   DOI
63 Yap, M. J., Balota, D. A., Cortese, M. J., & Watson, J. M. (2006). Single versus dual process models of lexical decision performance: Insights from RT distributional analysis. Journal of Experimental Psychology: Human Perception and Performance, 32, 1324-1344.   DOI
64 Yap, M. J., Balota, D. A., Tse, C. -S., & Besner, D. (2008). On the additive effects of stimulus quality and word frequency in lexical decision: Evidence for opposing interactive influences revealed by RT distributional analyses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 495-513.   DOI
65 Forster, K., & Chambers, S. M. (1973). Lexical access and naming time. Journal of Verbal Learning and Verbal Behavior, 12, 627-635.   DOI
66 Gillespie D. T. (1996), Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral, Phys. Rev. E, 54, 2084   DOI
67 Grice, G. R., Nullmeyer, R., & Spiker, V. A. (1982). Human reaction time: Toward a general theory. Journal of Experimental Psychology: General, 111, 135-153.   DOI
68 Grice, G. R. (1968). Stimulus intensity and response evocation. Psychological Review, 75, 359-373.   DOI
69 Grice, G. R. (1972). Application of a variable criterion model to auditory reaction time as a function of the type of catch trial. Perception & Psychophysics, 12, 103-107.   DOI
70 Grice, G. R., Canham, L., & Boroughs, J. M. (1984). Combination rule for redundant information in reaction time tasks with divided attention. Perception & Psychophysics, 35, 451-463.   DOI
71 Heathcote, A., Popiel, S. J., & Mewhort, D. J. K. (1991). Analysis of response time distributions: An example using the Stroop task. Psychological Bulletin, 109, 340-347.   DOI
72 Henderson, J. M., Pollatsek, A., & Rayner, K. (1989). Covert visual attention and extrafoveal information use during object identification. Perception & Psychophysics, 45, 196-208.   DOI
73 Huey, E. B. (1908). The psychology and pedagogy of reading. NY: Macmillan.
74 Inhoff, A. W., & Rayner, K. (1986). Parafoveal word processing during eye fixations in reading: Effects of word frequency. Perception and Psychophysics, 40, 431-439.   DOI
75 Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the mind during reading: The influence of past, present, and future words on fixation durations. Journal of Experimental Psychology: General, 135,13-35.
76 Jones, M. & Dzhafarov, E. N. (2014). Unfalsifiability and mutual translatability of major modeling schemes for choice reaction time. Psychology Review,121(1), 1-32.   DOI
77 Juel, C. (1991). Beginning reading. In R. Barr, M. L. Kamil, P. B. Mosenthal, & P. D. Pearson (Eds.), Handbook of reading research (pp. 759-788). New York: Longman.
78 Juhasz, B. J., & Rayner, K. (2003). Investigating the effects of a set of intercorrelated variables on eye fixation durations in reading. Journal of Experimental Psychology: Learning, Memory & Cognition, 29, 1312-1318.   DOI
79 Juhasz, B. J., & Rayner, K. (2006). The role of age-of-acquisition and word frequency in reading: Evidence from eye fixation durations. Visual Cognition, 13, 846-863.   DOI
80 Kang, B. & Kim, H. (2004). The analysis of Korean morphology and word frequency 2, Research Institute of Korea study.
81 Kliegl, R., Risse, S., & Laubrock, J. (2007). Preview Benefit and Parafoveal-on-Foveal Effects from Word N+2. Journal of Experimental Psychology: Human Perception and Performance, 33(5), 1250-1255.   DOI
82 Klin, C. M., Guzmán, A. E., & Levine, W. H. (1999). Prevalence and persistence of predictive inferences. Journal of Memory and Language, 40(4), 593-604.   DOI
83 Koh, S., Hong, H., Yoon, S., & Cho, P. (2008). The frequency effect in Korean noun eojeols: an eye-tracking study, The Korean Journal of Experimental Psychology, 20(1), 21-37
84 Inhoff, A. W., Starr, M., & Liu, W. M. (1998). Eye-movement-contingent display changes are not compromised by flicker and phosphor persistence. Psychonomic Bulletin & Review, 5, 101-106.   DOI
85 Lovett, Maureen W. Warren-Chaplin, Patricia M., Ransby, Marilyn J. & Borden, Susan L. (1990). Training the word recognition skills of reading disabled children: Treatment and transfer effects. Journal of Educational Psychology, 82(4), 769-780.   DOI
86 Koh, S., Yoon, N., Yoon, S., & Pollatsek, A. (2012). Word Frequency and Root-Morpheme Frequency Effects on Processing of Korean Particle-Suffixed Words, Journal of Cognitive Psychology, 25 (1), 64-67.   DOI
87 Link, S. W., & Heath, R. A. (1975). A sequential theory of psychological discrimination. Psychometrika, 40, 77-105.   DOI
88 Long, D. L., Oppy, B. J., & Seely, M. R. (1994). Individual differences in the time course of inferential processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1456-1470.   DOI
89 Matzke, D. & Wagenmakers, E. -J. (2009). Psychological interpretation of ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16, 798-817.   DOI
90 McConkie, G. W. (1979). On the role and control of eye movements in reading. In E A. Kolers, M.E. Wrolstad, & H. Bouma (Eds.), Processing of visible language (pp. 37-48). New York: Plenum.
91 McConkie, G. W. (1981). Evaluating and reporting data quality in eye movement research. Behavior Research Methods & Instrumentation, 13, 97-106.   DOI
92 McConkie, G. W., & Rayner, K. (1975). The span of the effective stimulus during a fixation in reading. Perception & Psychophysics, 17, 578-586.   DOI
93 McKoon, G. & Ratcliff, R. (2018). Adults with poor reading skills, older adults, and college students: The meanings they understand during reading using a diffusion model analysis. Journal of Memory and Language, 102, 115-129   DOI
94 Traxler, M. J. (2012). Introduction to Psycholinguistics: Understanding Language Science. Boston, MA: Wiley-Blackwell.
95 Staub, A., & Rayner, K. (2007). Eye movements and on-line comprehension processes. In G. Gaskell (Ed.), The Oxford handbook of psycholinguistics (pp. 327-342). Oxford, UK: Oxford University Press.
96 Staub, A., White, S. J., Drieghe, D., Hollway, E. C., & Rayner, K. (2010). Distributional effects of word frequency on eye fixation durations. Journal of Experimental Psychology: Human Perception and Performance, 36, 1280-1293.   DOI
97 Till, R., Mross, E. & Kintsch, W. (1988) Time Course of Priming for Associate and Inference Words in a Discourse Context. Memory & Cognition, 16 (4), 283-298.   DOI
98 Tuerlinckx, F., Maris, E., Ratcliff, R., & De Boeck, P. (2001). A comparison of four methods for simulating the diffusion process. Behavior Research Methods, Instruments, and Computers, 33, 443-456.   DOI
99 Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127-154.   DOI
100 Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of brownian motion. Phys. Rev., 36, 823-841.   DOI
101 O'Regan, J. K. (1979). Eye guidance in reading: Evidence for the linguistic control hypothesis. Perception & Psychophysics, 25, 501-509.   DOI
102 Underwood, G., Bloomfield, R., & Clews, S. (1988). Information influences the pattern of eye fixations during sentence comprehension. Perception, 17, 267-278.   DOI
103 Underwood, G., Clews, S., & Everatt, J. (1990). How do readers know where to look next? Local information distributions influence eye fixations. Quarterly Journal of Experimental Psychology, 42A, 39-65.   DOI
104 Usher, M., & McClelland, J. L. (2001). On the time course of perceptual choice: The leaky competing accumulator model. Psychological Review, 108, 550-592.   DOI
105 Monsell, S. (1991). The nature and locus of word frequency effects in reading. In D. Besner G. W. Humphreys(Eds.), Basic processes in reading: Visual word recognition, (pp. 148-197). Hillsdale, NJ:Erlbaum.
106 Morrison, C. M. & Ellis, A. W. (1995). Roles of word frequency and age of acquisition in word naming and lexical decision, Journal of experimental psychology: Learning, Memory and Cognition, 21(1), 116-133   DOI
107 O'Regan, J. K. (1990). Eye movements and reading. In E. Kowler (Ed.), Eye movements and their role in visual and cognitive processes (pp.395-453). Amsterdam: Elsevier.
108 Osaka, N. (1992). Size of saccade and fixation duration of eye movements during reading: Psychophysics of Japanese text processing. Journal of the Optical Society of America, 9, 5-13.   DOI
109 Palmer, J., Huk, A. C., & Shadlen, M. N. (2005). The effect of stimulus strength on the speed and accuracy of a perceptual decision. Journal of Vision, 5, 376-404.   DOI
110 Perfetti, C., Marron, M., & Foltz, P. W. (1996). Sources of Comprehension Failure: Theoretical Perspectives and Case Studies. In C. Cornoldi & J. Oakhill (Eds.) Reading Comprehension Difficulties: Processes and interventions, 137-165. Hillsdale, NJ: Lawrence Erlbaum Assoc.
111 Plourde, C. E., & Besner, D. (1997). On the locus of the word frequency effect in visual word recognition. Canadian Journal of Experimental Psychology, 51, 181-194.   DOI
112 Pollatsek, A., & Rayner, K. (1989). Reading. In M. I. Posner (Ed.), Foundations of cognitive science. Cambridge: MIT Press, 1989.
113 Ratcliff, R. (2001). Diffusion and random walk processes. International encyclopedia of the social and behavioral sciences, Oxford, England: Elsevier, 6, 3668-3673.
114 Pollatsek, A., Reichle, E. D., & Rayner, K. (2006). Tests of the E-Z Reader model: Exploring the interface between cognition and eye-movement control. Cognitive Psychology, 52, 1-52.   DOI
115 Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to deal with "the language-as fixed-effect fallacy": Common misconceptions and alternative solutions. Journal of Memory and Language, 41(3), 416-426.   DOI
116 Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59-108.   DOI
117 Ratcliff, R. (1988). Continuous versus discrete information processing: Modeling the accumulation of partial information. Psychological Review, 95, 238-255.   DOI
118 Ratcliff, R. (2001). Putting noise into neurophysiological models of simple decision making. Nature Neuroscience, 4, 336.   DOI
119 Ratcliff, R. (2002). A diffusion model account of reaction time and accuracy in a brightness discrimination task: Fitting real data and failing to fit fake but plausible data. Psychonomic Bulletin and Review, 9, 278-291.   DOI
120 Ratcliff, R., Gomez, P, & McKoon, G. (2004). A diffusion model account of the lexical decision task. Psychological Review, 111(1), 159-182   DOI
121 Ratcliff, R. & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Compuation, 20, 873-922.   DOI