Browse > Article
http://dx.doi.org/10.12925/jkocs.2022.39.6.916

Distribution of the extended-spectrum beta-lactamase genes derived from microorganisms in the waterfront environments  

Young-Min Bae (Department of Life Science and Public Health, Changwon University)
Publication Information
Journal of the Korean Applied Science and Technology / v.39, no.6, 2022 , pp. 916-923 More about this Journal
Abstract
Water samples were collected from three spots(Namcheon, Changwoncheon and Cheongwoonji) in Changwon and genomic DNA was isolated from them. Quantitative PCR was performed with the isolated DNA as template and primers targeting five different class A extended-spectrum beta-lactamase(ESBL) genes(blaOXA-1, blaSHV, blaTEM, blaCTX-M-1, blaCTX-M-9). The number of total ESBL genes from each sample showed large variations between each sample. Thirty nanograms of DNA from Namcheon contained 1.93×106 copies of ESBL genes whereas the same amount of DNA from Changwoncheon contained 1.47×105 copies of ESBL genes. However, the same amount of DNA from Cheongwoonji pond contained only 9.5×103 copies of ESBL genes. The ratio of each ESBL genes showed little difference between Namcheon river and Changwoncheon river, but DNA from Cheongwoonji pond showed a large difference from the rest. blaOXA-1 gene was present at 65.3%, and blaCTX-M-1 gene 33.6% for Namcheon comprising together almost 99%. blaOXA-1 gene was present at 64.1%, and blaCTX-M-1 gene 19.1% for Changwoncheon comprising together over 83%. blaCTX-M-1 gene was present at 87.5% and blaCTX-M-9 genes 9.8% for Cheongwoonji, a pond which is a closed and isolated environment.
Keywords
Antibiotic-resistance; penicillin; beta-lactam antibiotics; extended-spectrum beta-lactamase; quantitative PCR;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 L. P. Garrod, "Choice among penicillins and cephalosporins", Br. Med. J. Vol.3, pp.96-100, (1974).   DOI
2 D. Kaushik, M. Mohan, D. M. Borade, O. C. Swami, "Ampicillin: rise fall and resurgence". J Clin. Diagn. Res, Vol.8, No.5, pp.ME01-3, (2014).
3 P. D. Tamma, J. Rodriguez-Bano, "The use of noncarbapenem β-lactams for the treatment of extended-spectrum β-lactamase infections", Clin. Infect. Dis, Vol.64, No.7, pp.972-980, (2017).   DOI
4 F. K. Majiduddin, I. C. Materon, T. G. Palzkill, "Molecular analysis of beta-lactamase structure and function", Int J Med Microbiol, Vol.292, No.2, pp.127-137, (2002).   DOI
5 S. Ghafourian, N. Sadeghifard, S. Soheili S, Z. Sekawi, "Extended spectrum beta-lactamases: definition, classification and epidemiology", Curr Issues Mol Biol, Vol.17, No.1, pp.11-21, (2015).
6 J. O. Ogutu, Q. Zhang, Y. Huang, H. Yan, L. Su, B. Gao, W. Zhang, J. Zhao, W. Cai, W. Li, H. Zhao, Y. Chen, W. Song, X. Chen, Y. Fu, F. Zhang, "Development of a multiplex PCR system and its application in detection of blaSHV, blaTEM, blaCTX-M-1, blaCTX-M-9 and blaOXA-1 group genes in clinical Klebsiella pneumoniae and Escherichia coli strains", J Antibiot (Tokyo), Vol.68, No.12, pp.725-733, (2015).   DOI
7 B. Kaltenboeck, C. Wang, "Advances in real-time PCR: application to clinical laboratory diagnostics", Adv Clin Chem, Vol.40, pp.219-259, (2005).   DOI
8 M. Botes, M. de Kwaadsteniet, T. E. Cloete, "Application of quantitative PCR for the detection of microorganisms in water", Anal Bioanal Chem, Vol.405, pp.91-108, (2013).   DOI
9 P. Kralik, M. Ricchi, "A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything", Front Microbiol, Vol.8, No.2, pp.108, (2017).
10 S. Thijs, M. Op De Beeck, B. Beckers, S. Truyens, V. Stevens, J. D. Van Hamme, N. Weyens, J. Vangronsveld, "Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys", Front Microbiol, Vol.8, No.3, pp.494, (2017).
11 I. Herrig, S. Fleischmann, J. Regnery, J. Wesp, G. Reifferscheid, W. Manz, "Prevalence and seasonal dynamics of blaCTX-M antibiotic resistance genes and fecal indicator organisms in the lower Lahn River, Germany", PLoS One, Vol.15, No.4, pp.e0232289. (2020).
12 Y. Bae, "Isolation and identification of ampicillin-resistant bacteria in Changwon", J Life Sci, Vol..28, No.12, pp1529-1535, (2018).
13 H. Oh, J. Park, "Characteristics of Antibiotic Resistant Bacteria in Urban Sewage and River", J Kor Soci Environ Eng, Vol.31, No.3, pp.232-239, (2009).
14 Q. R. Ducarmon, R. D. Zwittink, R. P. J. Willems, A. Verhoeven, S. Nooij, F. R. M. van der Klis, E. Franz, J. Kool, M. Giera, C. M. J. E. Vandenbroucke-Grauls, S. Fuentes, E. J. Kuijper, "Gut colonization by extended-spectrum β-lactamase-producing Escherichia coli and its association with the gut microbiome and metabolome in Dutch adults: a matched case-control study", Lancet Microbe, Vol.3, No.6, pp.e443-e451. (2022).   DOI
15 S. T. Han, Y. Fei, J. Y. Huang, M. Xu, L. C. Chen, D. J. Liao, Y. J. Tan, "Establishment of a simple and quick method for detecting extended-spectrum β-lactamase (ESBL) genes in bacteria", J Biomol Tech, Vol.27, No.4, pp.132-137, (2016).   DOI
16 I. Wasko, A. Kozinska, E. Kotlarska, A. Baraniak, "Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants", Int J Environ Res Public Health, Vol.19, No.21, pp.13829, (2022).
17 M. Sola, Y. Mani, E. Saras, A. Drapeau, R. Grami, M. Aouni, J. Y. Madec, M. Haenni, W. Mansour, "Prevalence and characterization of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacterales from Tunisian seafood", Microorganisms, Vol.10, No.7, pp.1364, (2022).
18 M. F. Mojica, M. A. Rossi, A. J. Vila, R. A. Bonomo, "The urgent need for metallo-β-lactamase inhibitors: an unattended global threat", Lancet Infect Dis, Vol.22, No.1, pp.e28-e34, (2022).   DOI