Browse > Article
http://dx.doi.org/10.12925/jkocs.2021.38.3.750

Effect of a combination of resistance and aerobic exercise training on angiogenesis-related protein expression in different type of skeletal muscle of aged rats  

Yeo, Hyo-Seong (Rehabilitation Medicine of Seoul National University Bundang Hospital)
Publication Information
Journal of the Korean Applied Science and Technology / v.38, no.3, 2021 , pp. 750-761 More about this Journal
Abstract
This study was performed to observe the responses of angiogenesis-related protein expression in skeletal muscle of aged rats by regular resistance exercise training with aerobic exercise. For the purpose of the study, naturally aged SD rats (20-24 months, N=18) were used and divided into control (CON, n=6), resistance exercise (RE, n=6), and resistance + aerobic exercise (RE + AE, n=6) groups. RE group performed 3 sets × 4 exercises each session using a ladder for laboratory animals, and RE +AE group performed 2 sets × 3 times of ladder climbing and additional treadmill running (30 min) each session. After 8 weeks of exercise training, soleus muscle and extensor digitorum longus muscle (EDL) were extracted and used for analysis. Western blot was performed to analyze the expression levels of angiogenesis-related proteins (HIF-1α, VEGF, FLK-1, Ang-1, Ang-2) in skeletal muscle. As a result of the study, the expression of HIF-1α, VEGF, FLK-1, Ang-1, and Ang-2 proteins in soleus muscle (type I muscle) was higher in RE +AE than in CON group, and HIF-1α, VEGF, Ang-1, Ang-2 protein expression of RE group was higher than that of CON group. Furthermore, Ang-2 to Ang-1 ratio of RE + AE group was higher than that of RE group, showing differences by exercise type. In EDL muscle (type II muscle), HIF-1α was increased only by RE group, whereas VEGF and FLK-1 protein expressions were increased in both training types, and no difference was observed between the types of exercise training. In addition, there was no difference in angiopoieitin protein expressions in EDL muscle by exercise training. Therefore, in aging, regular exercise training induces skeletal muscle angiogenic response regardless of exercise type, and in particular, the combination of aerobic exercise with resistance exercise may have an additional positive effect on angiogenesis in type I muscle.
Keywords
Aging; Resistance exercise; Combined exercise; Angiogenesis; Skeletal muscle type;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. N. Croley, K. A. Zwetsloot, L. M. Westerkamp, N. A. Ryan, A. M. Pendergast, R. C. Hickner, W. E. Pofahl, T. P. Gavin, T. P, "Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs. young women", Journal of applied physiology, Vol.99, No.5, pp. 1872-1879, (2005).   DOI
2 I. M. Olfert, R. A. Howlett, K. Tang, N. D. Dalton, Y. Gu, K. L. Peterson, P. P. Wagner, E. C. Breen, "Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice", The Journal of physiology, Vol.15, No.587(Pt 8), pp. 1755-1767, (2009).
3 D. C. Lee, R. R. Pate, C. J. Lavie, X. Sui, T. S. Church, S. N. Blair, "Leisure-time running reduces all-cause and cardiovascular mortality risk", Journal of the American College of Cardiology, Vol.64, No.5, pp. 472-481, (2014).   DOI
4 K. A. Larkin, R. G. MacNeil, M. Dirain, B. Sandesara, T. M. Manini, T. W. Buford, "Blood flow restriction enhances post-resistance exercise angiogenic gene expression", Medicine and science in sports and exercise, Vol.44, No.11, pp. 2077, (2012).   DOI
5 L. N. Forti, E. Van Roie, R. Njemini, W. Coudyzer, I. Beyer, C. Delecluse, I. Bautmans, "Dose-and gender-specific effects of resistance training on circulating levels of brain derived neurotrophic factor (BDNF) in community-dwelling older adults", Experimental gerontology, Vol.70, pp. 144-149, (2015).   DOI
6 M. J. Drummond, S. Fujita, A. Takashi, H. C. Dreyer, E. Volpi, B. B. Rasmussen, "Human muscle gene expression following resistance exercise and blood flow restriction", Medicine and science in sports and exercise, Vol.40, No.4, pp. 691. (2008).   DOI
7 P. Rodriguez-Miguelez, E. Lima-Cabello, S. Martinez-Florez, M. Almar, M. J. Cuevas, J. Gonzalez-Gallego, "Hypoxia-inducible factor-1 modulates the expression of vascular endothelial growth factor and endothelial nitric oxide synthase induced by eccentric exercise", Journal of applied physiology, Vol.118, No.8, pp. 1075-1083, (2015).   DOI
8 O. Hudlicka, M. D. Brown, "Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor", Journal of vascular research, Vol.46, No.5, pp. 504-512, (2009).   DOI
9 N. Charifi, F. Kadi, L. Feasson, F. Costes, A. Geyssant, C. Denis, "Enhancement of microvessel tortuosity in the vastus lateralis muscle of old men in response to endurance training", The Journal of physiology, Vol.554, No.2, pp. 559-569, (2004).   DOI
10 H. S. Yeo, J. Y. Lim, N. Y. Ahn, "Effects of Aging on Angiogenic and Muscle Growth-Related Factors in Naturally Aged Rat Skeletal Muscles", Annals of geriatric medicine and research, Vol.24, No.4, pp. 305, (2020).   DOI
11 X. W. Cheng, M. Kuzuya, W. Kim, H. Song, L. Hu, A. Inoue, K. Nakamura, Q. Di, T. Sasaki, M. Tsuzuki, G. Shi, K. Okumura, T. Murohara, "Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/Akt-dependent hypoxia-induced factor-1 α reactivation in mice of advanced age", Circulation, Vol.122, No.7, pp. 707, (2010).   DOI
12 N. Ahn, K. Kim, "Effects of Aerobic and Resistance Exercise on Myokines in High Fat Diet-Induced Middle-Aged Obese Rats", International journal of environmental research and public health, Vol.17, No.8, pp. 2685, (2020).   DOI
13 J. L. Williams, A. Weichert, A. Zakrzewicz, L. Da Silva-Azevedo, A. R. Pries, O. Baum, S. Egginton, "Differential gene and protein expression in abluminal sprouting and intraluminal splitting forms of angiogenesis", Clinical science, Vol.110, No.5, pp. 587-595, (2006).   DOI
14 T. R. Lundberg, R. Fernandez-Gonzalo, T. Gustafsson, P. A. Tesch, "Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training", Journal of applied physiology, Vol.114, No.1, pp. 81-89, (2013).   DOI
15 S. C. Moore, A. V. Patel, C. E. Matthews, A. B. de Gonzalez, Y. Park, H. A. Katki, M. S. Linet, E. Weiderpass, K. Visvanathan, K. J. Helzlsouer, M. Thun, S. M. Gapstur, P. Hartge, I. M. Lee, "Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis", PLoS Med, Vol.9, No.11, pp. e1001335. (2012).   DOI
16 N. A. Ryan, K. A. Zwetsloot, L. M. Westerkamp, R. C. Hickner, W. E. Pofahl, T. P. Gavin, "Lower skeletal muscle capillarization and VEGF expression in aged vs. young men", Journal of applied physiology, Vol.100, No.1, pp. 178-185, (2006).   DOI
17 M. Ardakanizade, "The effects of mid-and long-term endurance exercise on heart angiogenesis and oxidative stress", Iranian journal of basic medical sciences, Vol.21, No.8, pp. 800, (2018).
18 M. E. Lindholm, H. Rundqvist, "Skeletal muscle hypoxia-inducible factor-1 and exercise", Experimental physiology, Vol.101, No.1, pp. 28-32, (2016).   DOI
19 T. M. Holloway, T. Snijders, V. L. LJC, L. B. Verdijk, "Temporal response of angiogenesis and hypertrophy to resistance training in young men", Medicine and science in sports and exercise, Vol.50, No.1, pp. 36-45, (2018).   DOI
20 P. G. Lloyd, B. M. Prior, H. T. Yang, R. L. Terjung, "Angiogenic growth factor expression in rat skeletal muscle in response to exercise training", American Journal of Physiology-Heart and Circulatory Physiology, Vol.284, No.5, pp. H1668-H1678, (2003).   DOI
21 D. R. Slivka, M. W. Heesch, C. L. Dumke, J. S. Cuddy, W. S. Hailes, B. C. Ruby, "Human skeletal muscle mRNA response to a single hypoxic exercise bout", Wilderness & environmental medicine, Vol.25, No.4, pp. 462-465, (2014).   DOI
22 C. P. Lambert, W. J. Evans, "Effects of aging and resistance exercise on determinants of muscle strength", Journal of the American Aging Association, Vol.25, No.2, pp. 73-78, (2002).   DOI
23 B. J. Behnke, M. W. Ramsey, J. N. Stabley, J. M. Dominguez 2nd, R. T. Davis 3rd, D. J. McCullough, J. M. Muller Delp, M. D. Delp, "Effects of aging and exercise training on skeletal muscle blood flow and resistance artery morphology", Journal of applied physiology, Vol.113, No.11, pp. 1699-1708, (2012).   DOI
24 A. Ahmadi, D. Sheikholeslami-Vatani, S. Ghaeeni, M. Baazm, "The effects of different training modalities on monocarboxylate transporters MCT1 and MCT4, hypoxia inducible factor-1α (HIF-1α), and PGC-1α gene expression in rat skeletal muscles", Molecular Biology Reports, Vol.48, No.3, pp. 2153-2161, (2021).   DOI
25 L. Jensen, J. Bangsbo, Y. Hellsten, "Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle", The Journal of physiology, Vol. 557, No.2, pp. 571-582, (2004).   DOI
26 L. Hosseini, M. S. Vafaee, R. Badalzadeh, "Melatonin and nicotinamide mononucleotide attenuate myocardial ischemia/reperfusion injury via modulation of mitochondrial function and hemodynamic parameters in aged rats", Journal of cardiovascular pharmacology and therapeutics, Vol.25, No.3, pp. 240-250, (2020).   DOI
27 R. Roubenoff, V. A. Hughes, "Sarcopenia: current concepts", The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, Vol.55, No.12, pp. M716-M724, (2000).   DOI
28 A. I. Nykanen, K. Pajusola, R. Krebs, M. A. Keranen, O. Raisky, P. K. Koskinen, K. Alitalo, K. B. Lemstrom, "Common protective and diverse smooth muscle cell effects of AAV-mediated angiopoietin-1 and-2 expression in rat cardiac allograft vasculopathy", Circulation research, Vol.98, No.11, pp. 1373-1380, (2006).   DOI
29 M. Ratajczak, D. Skrypnik, P. Bogdanski, E. Madry, J. Walkowiak, M. Szulinska, J. Meciaszek, M. Kregielska-Narozna, J. Karolkiewicz, Effects of Endurance and "Endurance-Strength Training on Endothelial Function in Women with Obesity: A Randomized Trial", International journal of environmental research and public health, Vol.16, No.21, pp. 4291, (2019).   DOI
30 S. D. Mason, H. Rundqvist, I. Papandreou, R. Duh, W. J. McNulty, R. A. Howlett, I. M. Olfert, C. J. Sundberg, N. C. Denko, L. Poellinger, R. S. Johnson, "HIF-1α in endurance training: suppression of oxidative metabolism", American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, Vol.293, No.5, pp. R2059-R2069, (2007).   DOI
31 R. Fernandez-Gonzalo, T. R. Lundberg, P. A. Tesch, "Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone", Acta Physiologica, Vol.209, No.4, pp. 283-294, (2013).   DOI
32 S. Joanisse, J. P. Nederveen, T. Snijders, B. R. McKay, G. Parise, "Skeletal muscle regeneration, repair and remodelling in aging: the importance of muscle stem cells and vascularization", Gerontology, Vol.63, No.1, pp. 91-100, (2017).   DOI
33 K. Tang, E. C. Breen, H. P. Gerber, N. M. Ferrara, P. D. Wagner, "Capillary regression in vascular endothelial growth factor-deficient skeletal muscle", Physiological genomics, Vol.18, No.1, 63-69, (2004).   DOI
34 S. Egginton, I. Badr, J. Williams, D. Hauton, G. C. Baan, R. T. Jaspers, "Physiological angiogenesis is a graded, not threshold, response", The Journal of physiology, Vol.589, No.1, pp. 195-206, (2011).   DOI
35 M. J. Rennie, "Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover", Applied Physiology, Nutrition, and Metabolism, Vol.34, No.3, pp. 377-381, (2009).   DOI
36 A. G. Philippe, G. Py, F. B. Favier, A. M. Sanchez, A. Bonnieu, T. Busso, R. Candau, "Modeling the responses to resistance training in an animal experiment study", BioMed research international, Vol. 2015. (2015).
37 H. T. Roh, S. Y. Cho, W. Y. So, "A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity", Journal of clinical medicine, Vol.9, No.3, pp. 842. (2020).   DOI
38 M. Bellafiore, G. Battaglia, A. Bianco, A. Palma, "Expression pattern of angiogenic factors in healthy heart in response to physical exercise intensity", Frontiers in physiology, Vol.10, pp. 238, (2019).   DOI
39 E. Koltai, Z. Zhao, Z. Lacza, A. Cselenyak, G. Vacz, C. Nyakas, I. Boldogh, N. Ichinoseki-Sekine, Z. Radak, "Combined exercise and insulin-like growth factor-1 supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA damage", Rejuvenation research, Vol.14, No.6, pp. 585-596, (2011).   DOI
40 T. P. Gavin, R. M. Kraus, J. A. Carrithers, J. P. Garry, R. C. Hickner, "Aging and the skeletal muscle angiogenic response to exercise in women", Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, Vol.70, No.10, pp. 1189-1197, (2015).   DOI
41 B. Hoier, K. Olsen, D. J. Hanskov, M. Jorgensen, L. R. Norup, Y. Hellsten, "Early time course of change in angiogenic proteins in human skeletal muscle and vascular cells with endurance training", Scandinavian Journal of Medicine & Science in Sports, Vol.30, No.7, pp. 1117-1131, (2020).   DOI
42 C. Suri, J. McClain, G. Thurston, D. M. McDonald, H. Zhou, E. H. Oldmixon, T. N. Sato, G. D. Yancopoulos, "Increased vascularization in mice overexpressing angiopoietin-1", Science, Vol.282, No.5388, pp. 468-471, (1998).   DOI
43 T. P. Gavin, J. L. Drew, C. J. Kubik, W. E. Pofahl, R. C. Hickner, "Acute resistance exercise increases skeletal muscle angiogenic growth factor expression", Acta physiologica, Vol.191, No.2, pp. 139-146, (2007).   DOI