Browse > Article
http://dx.doi.org/10.12925/jkocs.2020.37.4.762

Effects of intermittent ladder-climbing training on neurobiological markers in mice with type 2 diabetes  

Shin, Ki-Ok (Department of Physical Education, College of Arts and Physical Education, Dong-A University)
Woo, Jinhee (Department of Physical Education, College of Arts and Physical Education, Dong-A University)
Park, Chan-Ho (Department of Leisure and Sport, Dong-Eui University)
Yoon, Byung-Kon (Department of Physical Education, Dong-Eui University)
Kim, Do-Yeon (Department of Physical Education, Pusan National University)
Roh, Hee-Tae (Department of Physical Education, College of Arts and Physical Education, Dong-A University)
Publication Information
Journal of the Korean Applied Science and Technology / v.37, no.4, 2020 , pp. 762-768 More about this Journal
Abstract
This study aimed to investigate the effect of ladder-climbing exercise training on neurobiological markers in the hippocampus of mice with type 2 diabetes (T2DM). Twenty-one C57BL/6 male mice were randomly assigned to the non-diabetic control (NDC, n = 7), diabetic control (DC, n = 7), and diabetic training (DT, n = 7) groups. The DT group performed ladder-climbing training (LCT) five times a week for eight weeks. We measured the levels of hippocampal neurobiological markers (catalase [CAT], brain-derived neurotrophic factor [BDNF], nerve growth factor [NGF], amyloid-beta [Aβ], tau, and CC motif chemokine ligand 11 [CCL11]). The BDNF levels were significantly higher in the DT group than in the DC group (p < 0.05). The Aβ and CCL11 levels were significantly higher in the DC group than in the NDC and DT groups (p < 0.05). The tau levels were significantly higher in the DC group than in the NDC group (p < 0.05). However, there was no significant difference in CAT and NGF levels among the groups (p > 0.05). These results suggest that while T2DM could induce neurodegeneration, LCT may be effective in alleviating neurodegeneration caused by T2DM.
Keywords
resistance exercise; neurotrophins; neurogenesis; neurodegeneration; type 2 diabetes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 International Diabetes Federation. Diabetes Atlas (9th ed.). Brussels, Belgium: International Diabetes Federation, (2019).
2 J. H. Kim, Type 2 "Diabetes Mellitus as a Neurocognitive Disorder: Pathophysiology and Therapeutic Approach", J Korean Soc Biol Ther Psychiatry, Vol.20, No.1 pp. 24-34, (2014).
3 H. H. Lee, J. H. Yoon, S. H. Kim, "Effects of Treadmill Exercise on Memory and Hippocampal BDNF Expression in Streptozotocin induced Diabetic Rats", J Life Sci, Vol.17, No.11 pp. 1464-1471, (2007).   DOI
4 J. Leszek, E. Trypka, V. V. Tarasov, G. M. Ashraf, G. Aliev, "Type 3 Diabetes Mellitus: A Novel Implication of Alzheimers Disease", Curr Top Med Chem, Vol.17, No.12 pp. 1331-1335, (2017).   DOI
5 G. J. Biessels, F. Despa, "Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications", Nat Rev Endocrinol, Vol.14, No.10 pp. 591-604, (2018).   DOI
6 M. Shinohara, N. Sato, "Bidirectional interactions between diabetes and Alzheimer's disease", Neurochem Int, Vol.108, pp. 296-302, (2017).   DOI
7 B. M. Frier. "Hypoglycaemia in diabetes mellitus: epidemiology and clinical implications", Nat Rev Endocrinol, Vol.10, No.12 pp. 711-722, (2014).   DOI
8 S. K. Rad, A. Arya, H. Karimian, P. Madhavan, F. Rizwan, S. Koshy, G. Prabhu, "Mechanism involved in insulin resistance via accumulation of $\beta$-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer's disease", Drug Des Devel Ther, Vol.12, pp. 3999-4021, (2018).   DOI
9 S. Bathina, N. Srinivas, U. N. Das, "Streptozotocin produces oxidative stress, inflammation and decreases BDNF concentrations to induce apoptosis of RIN5F cells and type 2 diabetes mellitus in Wistar rats", Biochem Biophys Res Commun, Vol.486, No.2 pp. 406-413, (2017).   DOI
10 E. Gumuslu, N. Cine, M. Ertan, O. Mutlu, I. Komsuoglu Celikyurt, G. Ulak, "Exenatide upregulates gene expression of glucagon-like peptide-1 receptor and nerve growth factor in streptozotocin/nicotinamide-induced diabetic mice", Fundam Clin Pharmacol, Vol.32, No.2 pp. 174-180, (2018).   DOI
11 S. Bertram, K. Brixius, C. Brinkmann, "Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer's disease in T2DM patients", Endocrine, Vol.53, No.2 pp. 350-363, (2016).   DOI
12 P. Wu, X. Shi, M. Luo, Inam-U-Llah, K. Li, M. Zhang, J. Ma, Y. Li, Y. Liu, C. Zhang, X. Liu, S. Li, Q. Li, X. Chen, X. Che, F. Piao, "Taurine inhibits neuron apoptosis in hippocampus of diabetic rats and high glucose exposed HT-22 cells via the NGF-Akt/Bad pathway", Amino Acids, Vo.52, No.1 pp. 87-102, (2020).   DOI
13 S. Bweir, M. Al-Jarrah, A. M. Almalty, M. Maayah, I. V. Smirnova, L. Novikova, L. Stehno-Bittel, "Resistance exercise training lowers HbA1c more than aerobic training in adults with type 2 diabetes", Diabetol Metab Syndr, Vol.1, No.27 pp. 1-7, (2009).   DOI
14 J. Woo, K. O. Shin, C. H. Park, B. K. Yoon, D. Y. Kim, J. Y. Bae, Y. H. Lee, K, Ko, H. T. Roh, "Both endurance- and resistance-type exercise prevents neurodegeneration and cognitive decline in mice with impaired glucose tolerance", Journal of the Korean Applied Science and Technology, Vol.36, No.3 pp. 804-812, (2019).   DOI
15 S. Jung, J. Seo, Y. Sung, C. J. Kim, D. J. Kim, D. Y. Kim, "Effect of treadmill exercise on memory impairment in the diabetic rats", Korean J Str Res, Vol.19, No.2 pp. 175-182, (2011).
16 A. M. Stranahan, K. Lee, B. Martin, S. Maudsley, E. Golden, R. G. Cutler, M. P. Mattson, "Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice", Hippocampus, Vo.19, No.10 pp. 951-961, (2009).   DOI
17 A. Jamali, S. Shahrbanian, S. Morteza Tayebi, "The Effects of Exercise Training on the Brain-Derived Neurotrophic Factor (BDNF) in the Patients with Type 2 Diabetes: A Systematic Review of the Randomized Controlled Trials", J Diabetes Metab Disord, Vo.19, No.1 pp. 633-643, (2020).   DOI
18 D. H. Kim, "The Effect of Treadmill Running on Insulin Receptor, Oxidative Stress, and Impaired Synaptic Plasticity in the Brain of High Fat Diet-induced 3xTg-AD Mice", Exercise Science, Vol.27, No.3 pp. 191-199, (2018).   DOI
19 P. Kumar, K. Natarajan, N. Shanmugam, "High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: molecular mechanisms of IL-17 family gene expression", Cell Signal, Vol.26, No.3 pp. 528-39, (2014).   DOI
20 S. A. Villeda, J. Luo, K. I. Mosher, B. Zou, M. Britschgi, G. Bieri, T. M. Stan, N. Fainberg, Z. Ding, A. Eggel, K. M. Lucin, E. Czirr, J. S. Park, S. Couillard-Despres, L. Aigner, G. Li, E. R. Peskind, J. A. Kaye, J. F. Quinn, D. R. Galasko, X. S. Xie, T. A. Rando, T. Wyss-Coray, "The ageing systemic milieu negatively regulates neurogenesis and cognitive function", Nature, Vol.477, No.7362 pp. 90-94, (2011).   DOI
21 L. Tang, K. Luo, C. Liu, X. Wang, D. Zhang, A. Chi, J. Zhang, L. Sun, "Decrease in myostatin by ladder-climbing training is associated with insulin resistance in diet-induced obese rats", Chin Med J, Vol.127, No.12 pp. 2342-2349, (2014).   DOI
22 O. V. Kochetova, D. S. Avzaletdinova, T. V. Morugova, O. E. Mustafina, "Chemokine gene polymorphisms association with increased risk of type 2 diabetes mellitus in Tatar ethnic group, Russia", Mol Biol Rep, Vol.46, No.1 pp. 887-896, (2019).   DOI
23 S. H. Park, J. H. Yoon, D. Y. Seo, T. N. Kim, J. R. Ko, J. Han, "Resistance Exercise Training Attenuates the Loss of Endogenous GLP-1 Receptor in the Hypothalamus of Type 2 Diabetic Rats", Int J Environ Res Public Health, Vol.16, No.5 pp. 830, (2019).   DOI