Browse > Article
http://dx.doi.org/10.12925/jkocs.2015.32.4.718

A cross-linking poly(urethane acrylate) binder for Si negative electrode in Li-ion batteries (LIBs)  

Jang, Suk-Yong (Graduate School of Knowledge Based Technology and Energy, Korea Polytechnic University)
Publication Information
Journal of the Korean Applied Science and Technology / v.32, no.4, 2015 , pp. 718-723 More about this Journal
Abstract
For the fabrication of the Si negative electrode in Li-ion batteries (LIBs) containing the cross-linking polymer binder, in this work, the urethane acrylate (UA) oligomer was synthesized via a simple synthetic process. The cross-linked poly(urethane acrylate) (CPUA)/carbone black (CB)/Si composite (CPUA/CB/Si composite) was fabricated through reactions between their reactive vinyl segments in the UA oligomer. Interestingly, the CPUA/CB/Si composite showed better cycle performance than the poly(vinylidene fluoride) (PVdF)/CB/Si composite (PVdF/CB/Si composite) and the polyurethane (PU)/CB/Si composite (PU/CB/Si composite). The CPUA/CB/Si composite had the best lithiation of about $2586mAh\;g^{-1}$. The UA oligomer showed a good compatibility with the electrode materials and current collector after and before a curing process.
Keywords
cross-linking binder; Si; PVDF; oligomer; composite;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H.C. Tao, M. Huang, L.Z. Fan, X. Qu, Electrochim. Acta 89 (2013) 394-399.   DOI
2 S. Komaba, K. Okushi, T. Ozeki, H. Yui, Y. Katayama, T. Miura, T. Saito, H. Groult, Electrochem. Solid State Lett. 12 (2009) 107-110.
3 J. Bae, S.H. Cha, J. Park, Macromol. Res. 21 (2013) 826-831.   DOI
4 J.S. Thorne, J.R. Dahn, M.N. Obrovac, R.A. Dunlap, J. Power Sources 216 (2012) 139-144.   DOI
5 P.P. Ferguson, A.D. W. Todd, J.R. Dahn, Electrochem. Commun. 12 (2010) 1041-1044.   DOI
6 Q. Yuan, F. Zhao, Y. Zhao, Z. Liang, D. Yan, Electrochim. Acta 115 (2014) 16-21.   DOI
7 H. Usui, M. Shimizu, H. Sakaguchi, J. Power Sources 235 (2013) 29-35.   DOI
8 H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, P. Novak, J. Power Sources 161 (2006) 617-622.   DOI
9 N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, C. Chen, J. Power Sources 192 (2009) 644-651.   DOI
10 J. Li, D.B. Le, P.P. Ferguson, J.R. Dahn, Electrochim. Acta 55 (2010) 2991-2995.   DOI
11 Z. Chen, L. Christensen, J.R. Dahn, Electrochem. Commun. 5 (2003) 919-923.   DOI
12 A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, Appl. Mater. Interfaces 2 (2010), 3004-3010.   DOI
13 H.K. Park, B.S. Kong, E.S. Oh, Electrochem. Commun. 13 (2011) 1051-1053.   DOI
14 J. Guo, A. Sun, X. Chen, C. Wang, A. Manivannan, Electrochim. Acta 56 (2011) 3981-3987.   DOI
15 A.K. Rai, J. Gim, L.T. Anh, J. Kim, Electrochim. Acta 100 (2013) 63-71.   DOI
16 Y.S. Kim, J. Choi, D. Kim, Macromol. Res. 21 (2013) 49-54.   DOI
17 F.M. Hassan, Z. Chena, A. Yu, Z. Chen, X. Xiao, Electrochim. Acta 87 (2013) 844-852.   DOI
18 H. Xiang, K. Zhang, G. Ji, J.Y. Lee, C. Zou, X. Chen, J. Wu, Carbon 49 (2011) 1787-1796.   DOI