Browse > Article
http://dx.doi.org/10.12925/jkocs.2014.31.3.337

Interaction of Conjugated Conducting Polymer with Ionic Liquids  

Kim, Joong-Il (Department of Chemistry, Kwangwoon University)
Kim, Do-Young (Department of Electrical and Biological Physics, Kwangwoon University)
Kim, In-Tae (Department of Chemistry, Kwangwoon University)
Publication Information
Journal of the Korean Applied Science and Technology / v.31, no.3, 2014 , pp. 337-344 More about this Journal
Abstract
In this paper, we have examined the interaction of low bandgap polymer {poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole)(PHVTT)} with ionic liquids. Further, we have studied the temperature dependent interactions between the ionic liquids [tri-butyl methyl ammonium methyl sulfate ([TBMA][$MeSO_4$]), methyl imidazolium chloride ([MIM]Cl) and butyl methyl imidazolium chloride ([BMIM]Cl)] and polymer using UV-vis spectroscopy, FT-IR spectroscopy, photoluminescence (PL) spectroscopy, as a function of temperature at 21, 28, 32, $37^{\circ}C$. These experimental results suggest that interactions of polymer with ionic liquids ([MIM]Cl, [TBMA][$MeSO_4$]) showed weak interactions by increasing temperature but [BMIM]Cl has no significant effect with increase in temperature.
Keywords
low bandgap polymer; Ionic liquid; Interaction; FT-IR spectroscopy; Temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Liu, C. Lu, S. Twigg, M. Ghaffari, J. Lin, N. Winograd, Q. M. Zhang, Direct observation of ion distributions near electrodes in ionic polymer actuators containing ionic liquids, Sci. Rep. 3, 1-7 (2013).
2 Y. S. Ye, J. Rick, B. J. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A1, 2719-2743 (2013).
3 D. S. Rajput, K. Yamada, S. S. Sekhon. Study of ion diffusional motion in ionic liquid-based polymer electrolytes by simultaneous solid state NMR and DTA, J. Phys. Chem. B. 117, 2475-2481 (2013).   DOI
4 H. Cheng, C. Zhu, B. Huang, M. Lu, Y. Yang, Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids, Electrochim. Acta. 52, 5789-5794 (2007).   DOI   ScienceOn
5 Q. Zhao, S. Soll, M. Antonietti, J. Yuan, Organic acids can crosslink poly(ionic liquids into mesoporous polyelectrolyte complexes, Polym. Chem. 4, 2432-2435 (2013).   DOI
6 T. L. Greaves, C. Drummond, Protic ionic liquids: properties and applications, J. Chem. Rev. 108, 206-237 (2008).   DOI
7 M. J. Park, I. Choi, J. Hong, O. Kim, Polymer electrolytes integrated with ionic liquids for future electrochemical devices, J. Appl. Polym. Sci. doi:10.1002/APP.39064 (2013).
8 P. Attri, P. M. Reddy, P. Venkatesu, A. Kumar, T. Hofman, Measurements and molecular interactions for N,N-dimethyl formamide with ionic liquid mixed solvents, J. Phys. Chem. B. 114, 6126-6133 (2010).   DOI   ScienceOn
9 B. Qiu, B. Lin, F. Yan, Ionic liquid/ poly(ionic liquid)-based electrolytes for energy devices, Polym. Int. 62, 335-337 (2013).   DOI
10 T. Welton, Room-temperature ionic liquids solvents for synthesis and catalysis, Chem. Rev. 99, 2071-2084 (1999).   DOI   ScienceOn
11 Rogers, R. D.; Seddon, K. R. Ionic liquids-solvents of the future? Science. 302, 792-793 (2003).   DOI   ScienceOn
12 Davis, J. H. Task-specific ionic liquids, Chem. Lett. 33, 1072-1077 (2004).   DOI   ScienceOn
13 J. Megaw, A. Busetti, B. F. Gilmore, Isolation and characterization of 1-alkyl-3-meth ylimidazolium chloride ionic liquid-tolerant and biodegrading marine bacteria, PLoS ONE. 8, e60806, doi:10.1371/journal.pone.0060806 (2013).   DOI
14 X. D. Hou, Q. P. Liu, T. J. Smith, N. Li, M. H. Zo, Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids, PLoS ONE. 8, e59145, doi:10.1371/journal.pone.0059145 (2013).   DOI
15 P. Attri, P. Venkatesu, A. Kumar, Activity and stability of ${\alpha}$-chymotrypsin inbiocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate, Phys. Chem. Chem. Phys. 13, 2788-2796 (2011).   DOI
16 A. Martinelli, A. Matic, P. Jacobsson, L. Borjesson, M. A. Navarra, S. Panero, B. Scrosati, A structural study on ionic-liquid-based polymer electrolyte membranes, J. Electrochem. Soc. 154, G183.G187 (2007).   DOI
17 S. S. Sekhon, J. S. Park, E. Cho, Y. G. Yoon, C. S. Kim, W. Y. Lee, Morphology studies of high temperature proton conducting membranes containing hydrophilic/hydrophobic ionic liquids, Macromolecules. 42, 2054-2062 (2009).   DOI   ScienceOn
18 Y. He, T. P. Lodge, The micellar shuttle: thermo reversible, intact transfer of block copolymer micelles between an ionic liquid and water, J. Am. Chem. Soc. 128, 12666-12667 (2006).   DOI
19 M. Susan, T. Kaneko, A. Noda, M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes, J. Am. Chem. Soc. 127, 4976-4983 (2005).   DOI   ScienceOn
20 Y. He, Z. Li, P. Simone, T. P. Lodge, Self-assembly of block copolymer micelles in an ionic liquid, J. Am. Chem. Soc. 128, 2745-2750 (2006).   DOI
21 Y. Y. He, P. G. Boswell, P. Buhlmann, T. P. Lodge, Ion gels by self-assembly of a triblock copolymer in an ionic liquid, J. Phys. Chem. B 111, 4645-4652 (2007).   DOI
22 P. M. Simone, T. P. Lodge, Micellization of PS-PMMA diblock copolymers in anionic liquid, Macromol. Chem. Phys. 208, 339-348 (2007).   DOI
23 Z. Bai, Y. He, T. P. Lodge, Block copolymer micelle shuttles with tunable transfer temperatures between ionic liquids and aqueous solutions, Langmuir 24, 5284-5290 (2008).   DOI
24 P. M. Simone, T. P. Lodge, Lyotropicphase behavior of polybutadiene-poly(ethylene oxide) diblock copolymers in ionic liquids, Macromolecules 41, 1753-1759 (2008).   DOI
25 I. T. Kim, J. H. Lee, S. W. Lee, New Low Band Gap Conjugated Conducting Poly(2-nonylthieno[3,4-d]thiazole): Synthesis, Characterization, and Properties. Bull. Korean. Chem. Soc. 28, 2511-2513 (2007).   DOI