Browse > Article
http://dx.doi.org/10.12925/jkocs.2014.31.2.167

A Study on the Measurements of Beam Wave Propagation and Fluorescence Spectroscopy in Particles Media  

Kim, Ki-Jun (Dept. of Chemical Engineering, Daejin University)
Lee, Jou-Youb (Dept. of Disaster Mitigation and Safety Engineering, Jungwon University)
Sung, Wan-Mo (Dept. of Chemical Engineering, Daejin University)
Publication Information
Journal of the Korean Applied Science and Technology / v.31, no.2, 2014 , pp. 167-175 More about this Journal
Abstract
The influences of fluorescence, scattering, and flocculation in turbid material were interpreted for the scattered fluorescence intensity and wavelength, it has been studied the molecular properties by the spectroscopy of laser induced fluorescence(LIF). The effects of optical properties in scattering media have been found by the optical parameters(${\mu}_s$, ${\mu}_a$, ${\mu}_t$). Flocculation is an important step in many solid-liquid separation processes and is widely used in Photodynamic therapy. The interactions of several colloid particles can come into play which have major effect on the flocculation and LIF process. We measured scattering and fluorescence spectra of the sample for in vitro as function of concentration from lase source to detector. The value of scattering coefficient ${\mu}_s$ is large by means of the increasing particles of scatterer. Therefore, Phorphyrin A is larger than Phorphyrin C in scattering intensity ${\mu}_s$, but Phorphyrin A is smaller than Phorphyrin C in penetration depth ${\delta}$.
Keywords
light scattering; laser induced fluorescence; optical parameters; flocculation; photodynamic therapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. J. Kim and K. C. Sung, Monte Carlo Simulation on Light Distribution in Turbid Material, J. of Korean Oil Chemists Soc., 15(4), 11 (1998).
2 S. L. Jacques, C. A. Alter, and S. A. Prahl, Angular Dependence of HeNe Laser Light Scattering by Human Dermis, Laser in the Life Science, 1(4), 309 (1987).
3 K. J. Kim and K. C. Sung, Studies on Measurements of Optical Parameters in Turbid Material by Light Scattering, J. of Korean Oil Chemists Soc., 12(2), 151 (1995).
4 S. L. Jacques and S. A. Prahl, Modeling Octical and Thermal Distribution in Tissue During Laser Irradiation, Laser in Surgery and Medicine 6, 494 (1987).   DOI   ScienceOn
5 B. C. Wilson, Y. D. Park, Y. Hefetz, M. S. Patterson, S. J. Madsen and S. L. Jacqu es, The Potential of Timeresolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties, in Thermal and Optical Interactions with Biological and Related Composite Materials, M. J. Berry and G. M. Harpole, eds., Proc. S. P. I. E., p. 97, (1989).
6 T. J. Dougherty, C. J. Gomer, and K. R. Weishaupt, Energetics and Effeciency of Photoinactivation of Murine Tumor Cells Containing Hematoporphyrin, Cancer Research 36, 2330 (1976).
7 R. R. Alfano, G. C. Tang, A. Pradhan, W. Ran, S. J. Daniel, and E Opher, Fluorescence Spectro from Cancerone and Normal Human Breast and Lung Tissues, IEEE J. Quan. Elec. QE, 23(10), 1806 (1987).   DOI
8 S. R. Wickramasinghe, Y. Wu, and B. Han, Enhanced Microfiltration of Yeast by Flocculation, Desalination 147, 25, (2002).   DOI   ScienceOn
9 L. O. Poicard, C. J. Gomer, and A. E. Profio, Laser-Induced Hyperthermia of Ocular Tumors, Appl. Opt., 28(12), 2318 (1989).   DOI   ScienceOn
10 M. Winkelmann, B. Chance, and B. C. Wilson, Time Resolved Reflectance and Transmittanance for the Noninvasive Measurement of Tissue Optical Properties, Appl. Opt., 28(12), 2331 (1989).   DOI
11 K. Lee, I. J. Forbes, and W. H. Betts, Oxygen Dependency of Photocytotoxicity with Hematoporphyrin Derivative, Photochem. Photobiol 39(5), 631 (1984).   DOI   ScienceOn
12 R. Hilf, P. B. Leakey, S. J. Solltt, and S. L. Gibson, Photodynamic Inactivation of R3230AC Mammary Carcinoma in vitro with HPD: Effects of Dose, Time and Serum on Uptake and Phototoxicity, Photochem. Photobiol. 37(6), 633 (1983).   DOI   ScienceOn
13 H. Schnecknburger, M. Frenz, Y. Tsnchiya, U.. Denzer, and L. Schleinkofer, Picosecond Fluorescence Microscopy for Measuring Chlorophyll and Porphyrin Components in Conifers and Cultured Cells, Lasers in the Life Science 1(4), 299 (1987).
14 S. R. Wickramasinghe, Y. Wu, and B. Han, Enhanced Microfiltration of Yeast Flocculation, Desalination, 147, 25 (2002).   DOI   ScienceOn
15 K. J. Kim and K. C. Sung, A Study on Spectra of Laser Induced Fluorscence in Phantom, J. of Korean Oil Chemist' Soc,, 16(4), 329 (1999).