Browse > Article
http://dx.doi.org/10.12925/jkocs.2013.30.4.622

Obesity, obesity-related diseases and application of animal model in obesity research An overview  

Park, Byung-Sung (Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University)
Singh, N.K. (Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University)
Reza, A.M.M.T. (Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.30, no.4, 2013 , pp. 622-634 More about this Journal
Abstract
The multi-origin of obesity and its associated diseases made it's a complex area of biomedical science research and severe health disorder. From the 1970s to onwards this health problem turned to an epidemic without having any report of declining yet and it created a red alert to the health sector. Meanwhile, many animal models have been developed to study the lethal effect of obesity. In consequence, many drugs, therapies and strategies have already been adopted based on the findings of those animal models. However, many complicated things based on molecular and generic mechanism has not been clarified to the date. Thus, it is important to develop a need based animal model for the better understanding and strategic planning to eliminate/avoid the obesity disorder. Therefore, the present review would unveil the pros and cons of presently established animal models for obesity research. In addition, it would indicate the required turning direction for further obesity and obesity based disease research.
Keywords
Obesity; obesity-related diseases; animal models of obesity research;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Zhang, K. Guo, R. E. LeBlanc, D. Loh, G. J. Schwartz and Y. H. Yu, Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms, Diabetes, 56, 1647 (2007).   DOI   ScienceOn
2 P. Kopelman, Health risks associated with overweight and obesity, Obesity Reviews, 8, 13(2007).   DOI   ScienceOn
3 D. P. Guh, W. Zhang, N. Bansback, Z. Amarsi, C. L. Birmingham and A. H. Anis, The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis, BMC Public Health, 9, 88 (2009).   DOI   ScienceOn
4 B. D. Wilson, M. M. Ollmann, L. Kang, M. Stoffel, G. I. Bell and G. S. Barsh, Structure and function of ASP, the human homolog of the mouse agouti gene, Human Molecular Genetics, 4, 223 (1995).   DOI   ScienceOn
5 H. Y. Kwon, S. J. Bultman and C. Loffler, Molecular structure and chromosomalmapping of the human homolog of the agouti gene, Proceedings of the National Academy of Sciences of the United States of America, 91, 9760 (1994).   DOI   ScienceOn
6 A. M. Ingalls, M. M. Dickie and G. D. Snell, Obese, a new mutation in the house mouse, The Journal of Heredity, 41, 317 (1950).
7 K. P. Hummel, M. M. Dickie and D. L. Coleman, Diabetes, a new mutation in the mouse, Science, 153, 1127 (1966).   DOI
8 H. Chen, O. Charlat and L. A. Tartaglia, Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice, Cell, 84, 491 (1996).   DOI   ScienceOn
9 C.H.C. Chakraborty, C. H. Hsu, Z. H. Wen, C. S. Lin and G. Agoramoorthy, Zebrafish: a complete animal model for in vivo drug discovery and development, Current Drug Metabolism, 10, 116 (2009).   DOI   ScienceOn
10 G. Kari, U. Rodeck and A. P. Dicker, Zebrafish: an emerging model system for human disease and drug discovery, Clinical Pharmacology and Therapeutics, 82, 70 (2007).   DOI   ScienceOn
11 H. Olson, G. Betton and D. Robinson, Concordance of the toxicity of pharmaceuticals in humans and in animals, Regul. Toxicol. Pharmacol, 32, 56 (2000).   DOI   ScienceOn
12 J. Hau, Animal Models for Human diseases. Sourcebook of models for biomedical research, PP 3 (2008).
13 H.S. White, Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs, Epilepsia., 38, 9 (1997).
14 R.R. Leker and S. Constantini, Experimental models in focal cerebral ischemia: are we there yet?, Acta Neurochir, 83, 55 (2002).
15 J. Wang, J. Fields and S. Dore, The development of an improved preclinical mouse model of intracerebral hemorrhage using double infusion of autologous whole blood, Brain Res, 1222, 214 (2008).   DOI   ScienceOn
16 H. Matsui, M. Suzuki, R. Tsukuda, K. Iida, M. Miyasaka and H. Ikeda, Expression of ICAM-1 on glomeruli is associated with progression of diabetic nephropathy in a genetically obese diabetic rat, Wistar fatty, Diabetes Research and Clinical Practice, 32, 1 (1996).   DOI   ScienceOn
17 N. Matsunaga, V. Virador and C. Santis, In situ localization of agouti signal protein in murine skin using immunohistochemistry with an ASP-specific antibody, Biochemical and Biophysical Research Communications, 270, 176 (2000).   DOI   ScienceOn
18 S. E. Millar, M. W. Miller, M. E. Stevens and G. S. Barsh, Expression and transgenic studies of the mouse agouti gene provide insight into the mechanisms by which mammalian coat color patterns are generated, Development, 121, 3223 (1995).
19 D. Willard, D. Lu and I. R. Patel, Agouti protein is an antagonist of the melanocytestimulating-hormone receptor, Nature, 371, 799 (1994).   DOI   ScienceOn
20 D. M. J. Duhl, M. E. Stevens and H. Vrieling, Pleiotropic effects of the mouse lethal yellow (A(y)) mutation explained by deletion of a maternally expressed gene and the simultaneous production of agouti fusion RNAs, Development, 120, 1695 (1994).
21 E. J. Michaud, S. J. Bultman, L. J. Stubbs and R. P. Woychik, The embryonic lethality of homozygous lethal yellow mice (A(y)/A(y)) is associated with the disruption of a novel RNAbinding protein, Genes and Development, 7, 1203 (1993).   DOI
22 M. L. Klebig, J. E.Wilkinson, J. G. Geisler and R. P.Woychik, Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur, Proceedings of the National Academy of Sciences of the United States of America, 92, 4728 (1995).   DOI
23 R. L. Mynatt, R. J. Miltenberger and M. L. Klebig, Combined effects of insulin treatment and adipose tissuespecific agouti expression on the development of obesity, Proceedings of the National Academy of Sciences of the United States of America, 94, 919 (1997).   DOI
24 G. T. Kucera, D. M. Bortner and M. P. Rosenberg, Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants, Developmental Biology, 173, 162 (1996).   DOI   ScienceOn
25 S. R. Smith, B. Gawronska-Kozak and L. Janderova, Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes, Diabetes, 52, 2914 (2003).   DOI   ScienceOn
26 I. Hirayama, Z. Yi and S. Izumi, Genetic analysis of obese diabetes in the TSOD mouse, Diabetes, 48, 1183 (1999).   DOI   ScienceOn
27 S. Iizuka, W. Suzuki and M. Tabuchi, Diabetic complications in a new animal model (TSOD mouse) of spontaneous NIDDM with obesity, Experimental Animals, 54, 71 (2005).   DOI   ScienceOn
28 M. F. Allan, E. J. Eisen and D. Pomp, The M16 mouse: an outbred animal model of early onset polygenic obesity and diabesity, Obesity Research, 12, 1397 (2004).   DOI   ScienceOn
29 M. Nakamura and K. Yamada, Studies on a diabetic (KK) strain of the mouse, Diabetologia, 3, 212 (1967).   DOI
30 M. Igel, B. A. Taylor, S. J. Phillips,W. Becker, L. Herberg and H. G. Joost, Hyperleptinemia and leptin receptor variant Asp600Asn in the obese, hyperinsulinemic KKmouse strain, Journal of Molecular Endocrinology, 21, 337 (1998).   DOI   ScienceOn
31 H. Ikeda, KK mouse, Diabetes Research and Clinical Practice, 24, S313 (1994).   DOI   ScienceOn
32 A.A. Butler and R.D. Cone, The melanocortin receptors: lessons from knockout models, Neuropeptides, 36, 77 (2002).   DOI   ScienceOn
33 O. Reizes, J. Lincecum and Z. Wang, Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3, Cell, 106, 105 (2001).   DOI   ScienceOn
34 L. M. Zucker and T. F. Zucker, Fatty, a new mutation in the rat, Journal of Heredity, 52, 275 (1961).
35 G. A. Bray, The Zucker fatty rat: a review, Federation Proceedings, 36, 148 (1977).
36 J. E. Friedman, J. E. De Vente, R. G. Peterson and G. L. Dohm, Altered expression of muscle glucose transporter GLUT-4 in diabetic fatty Zucker rats (ZDF/Drt-fa), American Journal of Physiology, 261, 782 (1991).
37 H. Ikeda, A. Shino, T. Matsuo, H. Iwatsuka and Z. Suzuoki, A new genetically obese-hyperglycemic rat (Wistar fatty), Diabetes, 30, 1045 (1981).   DOI
38 G. Imai, T. Satoh and T. Kumai, Hypertension accelerates diabetic nephropathy in Wistar fatty rats, a model of type 2 diabetes mellitus, via mitogen-activated protein kinase cascades and transforming growth factor-${\beta}1$, Hypertension Research, 26, 339 (2003).   DOI   ScienceOn
39 D. Jia, M. Taguchi and M. Otsuki, Synthetic protease inhibitor camostat prevents and reverses dyslipidemia, insulin secretory defects, and histological abnormalities of the pancreas in genetically obese and diabetic rats, Metabolism, 54, 619 (2005).   DOI   ScienceOn
40 N. L. Bodkin, J. S. Hannah, H. K. Ortmeyer and B. C. Hansen, Central obesity in rhesus monkeys: association with hyperinsulinemia, insulin resistance and hypertriglyceridemia?, International Journal of Obesity, 17, 53 (1993).
41 T. Takahashi, A. Higashino and K. Takagi, Characterization of obesity in Japanese monkeys (Macaca fuscata) in a pedigreed colony, Journal of Medical Primatology, 35, 30 (2006).   DOI   ScienceOn
42 B. C. Hansen and N. L. Bodkin, Primary prevention of diabetes mellitus by prevention of obesity in monkeys, Diabetes, 42, 1809 (1993).   DOI
43 J. W. Kemnitz, Obesity in macaques: spontaneous and induced, Advances in Veterinary Science and Comparative Medicine, 28, 81 (1984).   DOI
44 W. A. Banks, J. Altmann, R. M. Sapolsky, J. E. Phillips-Conroy and J. E. Morley, Serum leptin levels as a marker for a syndrome X-like condition in wild baboons, Journal of Clinical Endocrinology and Metabolism, 88, 1234 (2003).   DOI
45 M.D. Hand, P.J. Armstrong and T.A. Allen, Obesity: occurrence, treatment and prevention, The Veterinary Clinics of North America, 19, 447 (1989).
46 K. Lindblad-Toh, C.M. Wade and T.S. Mikkelsen, Genome sequence, comparative analysis and haplotype structure of the domestic dog, Nature, 438, 803 (2005).   DOI   ScienceOn
47 A.T. Edney and P.M. Smith, Study of obesity in dogs visiting veterinary practices in the United Kingdom, The Veterinary Record, 118, 391 (1986).   DOI
48 L. Herberg and D. L. Coleman, Laboratory animals exhibiting obesity and diabetes syndromes, Metabolism, 26, 59 (1977).   DOI   ScienceOn
49 H. S. Jurgens, A. Schurmann and R. Kluge, Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice, Physiological Genomics, 25, 234 (2006).
50 W. Suzuki, S. Iizuka and M. Tabuchi et al, A new mouse model of spontaneous diabetes derived from ddY strain, Exp. Anim, 48, 181 (1999).   DOI   ScienceOn
51 L.A. Tartaglia, M. Dembski and X. Weng, Identification and expression cloning of a leptin receptor, OB-R, Cell, 83, 1263 (1995).   DOI   ScienceOn
52 L. N. Berti-Mattera, J. Lowery, S. F. Day, R. G. Peterson and J. Eichberg, Alteration of phosphoinositide metabolism, protein phosphorylation, and carbohydrate levels in sciatic nerve fromWistar fatty diabetic rats, Diabetes, 38, 373 (1989).   DOI
53 K. Kawano, T. Hirashima, S. Mori and T. Natori, OLETF (Otsuka Long-Evans Tokushima fatty) rat: a new NIDDM rat strain, Diabetes Research and Clinical Practice, 24, S317 (1994).   DOI   ScienceOn
54 D. B. West, C. N. Boozer, D. L. Moody and R. L. Atkinson, Dietary obesity in nine inbred mouse strains, American Journal of Physiology, 262, 1025 (1992).
55 S.W. Keith, D.T. Redden, P.T. Katzmarzyk, M.M. Boggiano, E.C. Hanlon, R.M. Benca, D. Ruden, A. Pietrobelli, J.L. Barger, K.R. Fontaine, C. Wang, L.J. Aronne, S.M. Wright, M. Baskin, N.V. Dhurandhar, M.C. Lijoi, C.M. Grilo, M. Deluca, A.O. Westfall and D.B. Allison, Putative contributors to the secular increase in obesity: exploring the roads less traveled, Int. J. Obes. (Lond.), 30, 1585 (2006)   DOI
56 B.S. Park, Gamma fatty acid: A Review, J. of the Korean Oil Chemists' Soc, 25, 446 (2008).
57 Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold and J. M. Friedman, Positional cloning of the mouse obese gene and its human homologue, Nature, 372, 425 (1994).   DOI   ScienceOn
58 T.E. Adrian, G.L. Ferri, A.J. Bacarese-Hamilton, H.S. Fuessl, J.M. Polak, S.R. Bloom, Human distribution and release of a putative new gut hormone, peptide YY, Gastroenterology, 89, 1070 (1985).
59 I.Y. Kim, C.K. Zhoh, S.R.Han,Y.B. Bang and R.Y.Li, Anti-oxidative Activity and Moisturizing Effect of Fermented Puer Tea Extract, J. of the Korean Oil Chemists' Soc, 30, 272 (2013).   DOI   ScienceOn
60 B.S. Park, Effects of feeding evening primrose oil and hemp seed oil on the deposition of gamma fatty acid in eggs, J. of the Korean Oil Chemists' Soc, 25, 196 (2008).
61 K.M. Flegal, M.D. Carroll, C.L. Ogden and L.R. Curtin, Prevalence and trends in obesity among U.S. adults, 1999-2008, JAMA, 303, 235 (2010).   DOI   ScienceOn
62 C.D.C. Health, US: With chart book on trends in the health of Americans, National Center for Health Statistics, DHHS, publication No. 2004-1232 (2004).
63 F. Homo-Delarche and H.A. Drexhage, Immune cells, pancreas development, regeneration and type 1 diabetes, Trends Immunol, 25, 222 (2004).   DOI   ScienceOn
64 K.E. Thorpe, C.S. Florence, D.H. Howard and P. Joski, Trends: The impact of obesity on rising medical spending, Health Aff Suppl Web Exclusives, W4-480-W4-486 (2004).
65 E.A. Finkelstein, O.A. Khavjou, H. Thompson, J.G. Trogdon, L. Pan, B. Sherry and W. Dietz, Obesity and severe obesity forecasts through 2030, Am J Prev Med, 42, 563 (2012).   DOI   ScienceOn
66 M.A. Rynkowski, G.H. Kim and R.J. Komotar, A mouse model of intracerebral hemorrhage using autologous blood infusion, Nat. Protoc, 3, 122 (2008).   DOI   ScienceOn
67 A. Coppi, M. Cabinian, D. Mirelman and P. Sinnis, Antimalarial activity of allicin, a biologically active compound from garlic cloves, Antimicrob Agents Chemother, 50, 1731 (2006).   DOI   ScienceOn
68 F. Frischknecth, B. Martin, I. Thiery, C. Bourgouin and R. Menard, Using green fluorescent malaria parasites to screen for permissive vector mosquitoes, Malar J, 5, 23 (2006).   DOI   ScienceOn
69 R. Jaenisch and B. Mintz, Simian virus 40DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA, Proc Natl Acad Sci, 71, 1250 (1974).   DOI   ScienceOn
70 J. Gordon and F. Ruddle, Integration and stable germ line transmission of genes injected into mouse pronuclei, Science, 214, 1244 (1981).   DOI
71 F. Costantini and E. Lacy, Introduction of a rabbit beta-blobin gene into the mouse germ line, Nature, 294, 92 (1981).   DOI   ScienceOn
72 S. J. Bultman, E. J. Michaud and R. P. Woychik, Molecular characterization of the mouse agouti locus, Cell, 71, 1195 (1992).   DOI   ScienceOn
73 W. V. Brown, K. Fujioka, P.W. Wilson and K. A. Woodworth, Obesity: why be concerned?, The American Journal of Medicine, 122, 4 (2009).   DOI   ScienceOn
74 H. Hisaeda, Y. Maekawa and D. Iwakawa, Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells, Nat Med 10, 29 (2004).   DOI   ScienceOn
75 C. Bolton, The translation of drug efficacy from in vivo models to human disease with special reference to experimental autoimmune encephalomyelitis and multiple sclerosis, Inflammopharmacology, 15, 183 (2007).   DOI   ScienceOn
76 M. Okazaki, Y. Saito and Y. Udaka, Diabetic nephropathy in KK and KK-A mice, Experimental Animals, 51, 191 (2002).   DOI   ScienceOn