Browse > Article
http://dx.doi.org/10.12925/jkocs.2008.25.4.7

Catalytic Performance of Ionic Liquids for the Cycloaddition of Carbon Dioxide and Butyl Glycidyl Ether  

Park, Dae-Won (Department of Chemical Engineering, Pusan National University)
Ju, Hye-Young (Department of Chemical Engineering, Pusan National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.25, no.4, 2008 , pp. 469-476 More about this Journal
Abstract
The synthesis of cyclic carbonate from butyl glycidyl ether (BGE) and carbon dioxide was performed in the presence of three different types of ionic liquid : quarternary ammonium salt, alkyl pyridinium salt, and alkylimidazolium salt. Ionic liquids of different alkyl groups ($C_3$, $C_4$, $C_6$ and $C_8$) and anions ($Cl^-$, $Br^-$ and $I^-$) were used for the reaction which was carried out in a batch autoclave reactor at $60{\sim}120^{\circ}C$. The catalytic activity was increased with increasing alkyl chain length in the order of $C_3$ < $C_4$ < $C_6$. But the ionic liquid with longer alkyl chain length ($C_8$) decreased the conversion of BGE because it is too bulky to form an intermediate with BGE. For the counter anion of the ionic liquid catalysts, the BGE conversion decreased in the order $Cl^-$ > $Br^-$ > $I^-$.
Keywords
ionic liquid; carbon dioxide; butyl glycidyl ether; cyclic carbonate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. J. Darensbourg and M. W. Holtcamp, Catalysts for the reactions of epoxides and carbon dioxide, Coord. Chem. Rev., 153, 155 (1996)   DOI   ScienceOn
2 P. Wasserscheid and W. Keim, Ionic liquids - new solutions for transition metal catalysis, Angew. Chem. Int. Ed. Engl., 39, 3772 (2000)   DOI   ScienceOn
3 F. H. Hurley and T. P. Weir, Electrodeposition of metals from fused quaternary ammonium salts, J. Electrochem. Soc., 98, 203 (1951)   DOI
4 L. A. Dominey, V. R. Koch and T. J. Blakley, Thermally stable lithium salts for polymer electrolytes, Electrochim. Acta, 37, 1551 (1992)   DOI   ScienceOn
5 C. A. Reed and A. S. Larsen, Abstract Paper of 221st American Chemical Society National Meeting, IEC (2001)
6 D. Mac Farlane, J. Golding, S. Forsyth, M. Forsyth and G. B. Deacon, Low viscosity ionic liquids based on organic salts of the dicyanamide anion, Chem. Commun., 1430 (2001)
7 D. W. Lee, J. H. Hur, B. K. Kim, S. W. Park and D. W. Park, Synthesis of photopolymers bearing pendant cinnamic ester and cyclic carbonate groups, J. Ind. Eng. Chem., 9, 513 (2003)   DOI
8 S. Inoue and N. Yamazaki, Organic and Bioorganic Chemistry of Carbon dioxide, Kodansha Ltd., Tokyo (1981)
9 A. Rokicki and W. J. Kuran, The application of carbon dioxide as a direct material for polymer syntheses in polymerization and polycondensation reactions, J. Makromol. Sci. Rev. Mcromol. Chem., C21, 135 (1981)
10 B. S. Yu, E. S. Jeong, K. H. Kim, D. W. Park, S. W. Park and J. W. Lee, React. Kinet. Catal. Lett., 84, 175 (2005)   DOI
11 T. Aida, M. Ishikawa and S. Inoue, Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt ortriphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight, Macromolecules, 19, 8 (1986)   DOI
12 D. W. Park, B. S. Yu, E. S. Jeong, I. Kim, M. I. Kim, K. J. Oh and S. W. Park, Catal. Today, 98, 499 (2004)   DOI   ScienceOn
13 A. Rokicki, Poly(alkylene carbonates) with controlled molecular weight, US Patent 4,943, 677 (1990)
14 M. S. Super and E. J. Beckman, Copolymerizations involving carbon dioxide: the use of $CO_2$ as a monomer, Trends Polym. Sci., 5(7), 236 (1997)
15 R. Hagiwara and Y. Ito, Room temperature ionic liquids of alkyl imidazolium cations and fluoroanions, J. Fluorine Chem., 105, 221 (2000)   DOI   ScienceOn
16 J. Sun, S. I. Fujita, F.Zhao and M. Arai, A highly efficient catalyst system of $ZnBr_2/n-Bu_4NI$ for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide, Appl. Catal. A. Gen., 287, 221 (2005)   DOI   ScienceOn
17 C. E. Song, W. H. Shim, E. J. Roh and J. H. Choi, Scandium(III) triflate immobilised in ionic liquids: a novel and recyclable catalytic system for Friedel--Crafts alkylation of aromatic compounds with alkenes, Chem. Commun., 1695 (2000)
18 R. Nomura, A. Ninagawa and H. Matsuda, Synthesis of cyclic carbonates from carbon dioxide and epoxides in the presence of organoantimony compounds as novel catalysts, J. Org. Chem., 45, 3735 (1980)   DOI
19 M. Freemantle, Peter Debye award in physical chemistry, Chem. Eng. News, 78, 120 (2000)
20 H. Olivier-Bourbigou and L. Magna, Ionic liquids: perspectives for organic and catalytic reactions, J. Mol. Catal. A. Chem., 182, 419 (2002)   DOI   ScienceOn
21 N. Kihara and T. Endo, Makromol. Chem., 193, 1482 (1992)
22 H. Matsumoto, H. Kageyama and Y. Miyazaki, Room temperature molten salts based on tetraalkylammonium cations and bis(trifluoromethylsulfonyl)imide, Chem. Lett., 182 (2001)
23 A. S. Larsen, J. D. Holbrey, F. S. Tham and C. A. Reed, Designing ionic liquids: Imidazolium melts with inert carborane anions, J. Am. Chem. Soc., 122, 7264 (2000)   DOI   ScienceOn
24 G. Rokicki, W. Kuran and B. P. Marciniak, Monatsh. Chem., 115, 205 (1984)   DOI
25 J. A. King, Extractive method for the preparation of quaternary salts with perfluorinated anions, US Patent 5,705,696 (1998)
26 D. R. Bond, G. E. Jackson, H. C. Joao, M. N. Hofmeyr, T. A. Modro and L. R. Nassimbeni, Liquid clathrates, J. Chem. Soc., Chem. Commun., 1910 (1989)
27 D. R. MacFarlane, J. Sun, J. Golding, P. Meakin and M. Forsyth, High conductivity molten salts based on the imide ion, Electrochim. Acta, 45, 1271 (2000)   DOI   ScienceOn
28 C. M. Starks, C. L. Littoa and M. Halpern, Phase Transfer Catalysis, Chapman and Hall, New York, 11 (1994)
29 S. Inoue, T. Tsuruta and H. Koinuma, Copolymerzation of carbon dioxide and epoxide, J. Polym. Sci., Polym. Lett., 7, 287(1969)   DOI
30 J. D. Holbrey and K. R. Seddon, Clean Prod. Process., 1, 223 (1999)