Browse > Article
http://dx.doi.org/10.12925/jkocs.2004.21.1.3

Electroluminescent Properties of Anthracene Chromophore with Naphthylethenyl Substituents  

Kim, Hong-Soo (Department of Chemical Engineering, Chungcheong University)
Jeong, Noh-Hee (School of Chemical Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.21, no.1, 2004 , pp. 24-30 More about this Journal
Abstract
New electroluminescent materials based on anthracene chromophore with naphthylethenyl substituent, 9,10-bis($\alpha$-naphthylethenyl)anthracene (a-BNA), as well as four kinds of its derivatives were synthesized, and luminescent properties of these materials were investigated. Electrolumineecent(EL) emission band was discussed based on their substituent structure differences. It was found that the emission band strongly depends on the molecular structure of introduced substituent. It can be tuned from 557 nm to 591 nm by changing the substituent structures. On the other hand, the anthracene chromophore with bulky substituent possessed high melting point and they gave stable films through vacuum-sublimation. The double layer EL device of ITO/TPD/emission layer/Mg:Ag was employed, and exhibited efficient orange light originating from emitting materials. EL emission with a maximum luminance was observed in the b-BNA emitting material, : maximum luminance was about 8,060 cd $m^{-2}$ at an applied voltage of 10 V and current density of 680 $mA/cm^2$. In conclusion, the electroluminescent properties also showed good difference with their substituent structure.
Keywords
organic electroluminescent devices; anthracene chromophore; substituent difference;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 56, 799 (1990)   DOI
2 S. Tokito, Y. Taga, and T. Tsutsui, Synth Met., 91, 49 (1997)   DOI
3 D. Braun and A, J. Heeger, Appl. Phys. Lett., 58, 1982 (1991)   DOI
4 E. Aminaka and T. Tsutsui, Mat. Res. Soc Symp. Proc., 413, 91 (1996)
5 D. Zou, M. Yahiro, and T. Tsutsui, Synth Met, 91, 17 (1997)
6 E. Aminaka, T. Tsutsui, and S. Saito, J. Appl. Phys., 79, 8808 (1996)   DOI   ScienceOn
7 E. Aminaka, T. Tsutsui, and S. Saito, Synth Met., 71, 2009 (1995)   DOI   ScienceOn
8 C. H. Lee, S. W. Kim, and S. Y. Oh, Polymer(Korea), 26, 543 (2002)
9 Y. Kunugi, I. Tabakovic, A. Canavesi, and L. L. Miller, Synth Met., 89, 227 (1997)   DOI   ScienceOn
10 C. W. Tang and S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65, 3610 (1989)   DOI
11 J. Kido, M. Kimura, and K. Nagai, Science, 267, 1332 (1995)   DOI
12 Y. Yang, Q. Pei, and A. J. Heeger, J. Appl. Phys., 79, 934 (1996)   DOI
13 C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., 27, L269 (1988)   DOI
14 J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett., 63, 2627 (1993)   DOI   ScienceOn
15 J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett., 67, 2281 (1995)   DOI   ScienceOn
16 H. S. Kim, M. Era, and T. Tsutsui, Kor. Polym. J., 6, 231 (1998)
17 H. S. Kim, S. H. Noh, and T. Tsutsui, Kor. Polym. J., 7, 18 (1999)
18 C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987)   DOI
19 A. Higuchi, H. Inada, T. Kobada, and Y. Shirota, Adv. Mater., 3, 549 (1991)   DOI
20 J. Kido and Y. Iizumi, Chem. Lett., 10, 963 (1997)
21 D. U. Kim, T. Tsutsui, and S. Saito, Polymer, 36, 2481 (1995)   DOI   ScienceOn
22 D. U. Kim and T. Tsutsui, J. Appl.Phys., 80, 4785 (1996)   DOI   ScienceOn