Browse > Article
http://dx.doi.org/10.12925/jkocs.2003.20.4.12

Preparation of Zirconium Nitride by Nitridation of Zirconia and its Physical Characteristics  

Ahn, Beom-Shu (Dept. of Chemistry, Dae Jin University)
Sung, Ki-Chun (Dept. of Chemical Eng., Dae Jin University)
Publication Information
Journal of the Korean Applied Science and Technology / v.20, no.4, 2003 , pp. 358-365 More about this Journal
Abstract
Zirconium nitride powders were synthesized at a relatively lower temperature using methane as a reducing agent in the nitridation of zircoia. $ZrO_2$ powder was prepared by a sol-gel technique. The resulting sol-gel was centrifuged, and the gel was washed with deionized water. Anhydrous ammonia was used as the nitrogen source and methane was used as the reducing agent. Conversion diagrams show the equilibrium solid phase as a function of reagent concentrations for a specific temperature and gas pressure for the reagent system $NH_3-ZrO_2-CH_4$. The reagent concentration ranges within which pure ZrN is formed increase with increasing reaction temperature. Low pressure with an excess of hydrogen decreases the reaction temperature at which pure ZrN is formed. Low pressure together with the introduction of excess hydrogen into the reaction system increases Zr and N conversion efficiency and retards C deposition.
Keywords
nitridatin; zirconia; phase diagram; conversion efficiency; XRD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Van Meerteen and J. W. Coenen, J. Catal., 46, 13 (1977)   DOI
2 T. E. White, Catal. Rev., 8, 117 (1973)   DOI   ScienceOn
3 C. M. Wai and B. Waller, Ind. Eng. Chem. Res., 39, 4837 (2000)   DOI   ScienceOn
4 M. Centeno, P. Malet, and I. Carrizosa, J. Phys. Chem. B, 104, 3310 (2000)
5 L. Lacshmi, Z Juo, and E. Alyea, Langmuir, 15, 3521 (1999)   DOI   ScienceOn
6 S. Vaudagan, R. Comelli, and S. Canavesse, J. Catal., 169, 389 (1997)   DOI   ScienceOn
7 R. Fix, G. Gordon, and D. Hoffman, Chem. Mater., 3, 1138 (1991)   DOI
8 A. Kingon, I. Lutz, and R. Davis, J. Am Ceram Soc., 66, 551 (1983)
9 R. Scholler, B. Broddack, and H. Herden, J. Phys. Chem., 62, 17 (1981)
10 A. Frenet, L. Degols, and F. Cruce, J. Catal., 56, 236 (1978)   DOI
11 V. Avdeev, N. Solokina, and L. Monaykina, J. Phys. Chem. Solids, 57, 837 (1996)   DOI   ScienceOn
12 A. Schlegel and H. Ling, J. Phys. C, 10, 4889 (1977)
13 P. Netterfield, J. Martin, and D. Mackenez, J. Mater. Sci. Lett., 9, 972 (1990)   DOI
14 M. Heni and E. Illenberger, J. Chem. Phys., 83, 6056 (1985)   DOI
15 M. Badden. F. Berny, and G. Wipff. J. Mol. Liq., 90, 1 (2001)   DOI
16 L. George, K. Viswanadaan, and S. Singh, J. Phys. Chem., 101, 2459 (1997)   DOI   ScienceOn
17 G. Fischman and W. Petusky, J. Am. Ceram. Soc., 68, 185 (1985)   DOI   ScienceOn