Browse > Article
http://dx.doi.org/10.5338/KJEA.2020.39.3.31

Current Status of GM Crop Discrimination Technology Using Spectroscopy  

Sohn, Soo-In (Biosafety Division, National Institute of Agricultural Sciences)
Oh, Young-Ju (Institue for Future Environmental Ecology Co., Ltd.)
Cho, Woo-Suk (Biosafety Division, National Institute of Agricultural Sciences)
Cho, Yoonsung (Biosafety Division, National Institute of Agricultural Sciences)
Shin, Eun-Kyoung (Biosafety Division, National Institute of Agricultural Sciences)
Kang, Hyeon-jung (Biosafety Division, National Institute of Agricultural Sciences)
Publication Information
Korean Journal of Environmental Agriculture / v.39, no.3, 2020 , pp. 263-272 More about this Journal
Abstract
BACKGROUND: This paper describes the successful discrimination of GM crops from the respective wild type (WT) controls using spectroscopy and chemometric analysis. Despite the many benefits that GM crops, their development has raised concerns, particularly about their potential negative effects on food production and the environment. From this point of view, the introduction of GM crops into the market requires the development of rapid and accurate identification technologies to ensure consumer safety. METHODS AND RESULTS: The development of a GM crop discrimination model using spectroscopy involved the pre-processing of the collected spectral information, the selection of a discriminant model, and the verification of errors. Examples of GM versus WT discrimination using spectroscopy are available for soybeans, tomatoes, corn, sugarcane, soybean oil, canola oil, rice, and wheat. Here, we found that not only discrimination but also cultivar grouping was possible. CONCLUSION: Since for the determination of GM crop there is no pre-defined pre-processing method or calibration model, it is extremely important to select the appropriate ones to increase the accuracy in a case-by-case basis.
Keywords
Calibration; Chemometrics; GM crop; Model; Spectroscopy; Pre-processing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sternberg JC, Stillo HS, Schwendeman RH (1960) Spectrophotometric analysis of multicomponent systems using the least squares method in matrix form. Ergosterol irradiation system. Analytical Chemistry, 32(1), 84-90. https://doi.org/10.1021/ac60157a025.   DOI
2 Wold S (1975) Soft modeling by latent variables; the non-linear iterative partial least squares(NIPALS) approach. Journal of Applied Probability, 12(1), 117-142. https://doi.org/10.1017/S0021900200047604.   DOI
3 Hammateenejad B, Akhind M, Samar F (2007) A comparative study between PCR and PLS in simultaneous spectrophotometric determination of dophenylamine, aniline, and phenol: Effects of wavelength selection. Spectrochimica Acta, Part A: Moleculr and Biomolecular Spectroscopy, 67(3-4), 958-965. https://doi.org/10.1016/j.saa.2006.09.014.   DOI
4 Muniz R, Perez MA, De La Torre C, Carleos CE, Corral N, Baro JA (2009) Comparison of principal component regression (PCR) and partial least suare (PLS) methods in prediction of raw milk composition by VIS-NIR spectrometry. Application to development of on-line sensors for fat, protein and lactose contents. pp. 2564-2668, XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal. ISBN: 978-963-88410-0-1.
5 Naes T, Irgens C, Martens H (1986) Comparison of linear statistical methods for calibration of NIR instruments. Journal of the Royal Statistical Society: Series C (Applied Statistics), 35(2), 195-206. https://doi.org/10.2307/2347270.   DOI
6 Kalivas JH, Gerperline PJ (2006) Practical guide to chemometrics, ed: Germperline P, pp. 105-166, 2nd edition, CRC Taylor & Francis.
7 Despagne F, Massart DL (1998) Neural networks in multivariate calibration. Analyst, 123(11), 157R-178R. https://doi.org/10.1039/A805562I.   DOI
8 Mangasarian OL, Musicant DR (2001) Lagrangian Support Vector Machines. Journal of Machine Learning Research, 1, 161-177. https://doi.org/10.1162/15324430152748218.
9 van Rensburg JBJ (2007) First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bttransgenic maize. South African Journal of Plant and Soil, 24(3), 147-151. https://doi.org/10.1080/02571862.2007.10634798.   DOI
10 Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. Journal of Experimental Botany, 59(13), 3551-3562. https://doi.org/10.1093/jxb/ern212.   DOI
11 Feng X, Zhao Y, Zhang C, Cheng P, He Y (2017) Discrimination of transgenic maize kernel using NIR hyperspectral imaging and multivariate data analysis. Sensors, 17(8), 1894. https://doi.org/10.3390/s17081894.   DOI
12 Brunnert HJ, Spener F, Borchers T (2001) PCR-ELISA for the CaMV-35S promoter as a screening method for genetically modified Roundup Ready spybeans. European Food Research and Technology, 213(4-5), 366-371. https://doi.org/10.1007/s002170100371.   DOI
13 Hubner P, Studer E, Luthy J (1999) Quantitative competitive PCR for the detection of genetically modified organisms in food. Food Control, 10(6), 353-358. https://doi.org/10.1016/S0956-7135(99)00074-2.   DOI
14 Taverniers I, Van Bockstaele E, De Loose M (2004) Cloned plasmid DNA fragments as calibrators for controlling GMOs: Diferent real-time duplex quantitative PCR methods. Analytical and Bioanalytical Chemistry, 378(5), 1198-1207. https://doi.org/10.1007/s00216-003-2372-5.   DOI
15 Zimmermann A, Luthy J, Pauli U (2000) Event specific transgene detection in Bt11 corn by quantitative PCR at the integration site. Lebensmittel-Wissenschaft Technologie-Food Science and Technology, 33(3), 210-216. https://doi.org/10.1006/fstl.2000.0637.   DOI
16 Liu G, Su W, Xu Q, Long M, Zhou J, Song S (2004) Liquid-phase hybridization based PCR-ELISA for detection of genetically modified organisms in food. Food Control, 15(4), 303-306. https://doi.org/10.1016/S0956-7135(03)00081-1.   DOI
17 Mannelli I, Minunni M, Tombelli S, Mascini M (2003) Bulk acoustic wave affinity biosensor for genetically modified organisms detection. IEEE Sensors Journal, 3(4), 369-375. https://doi.org/10.1109/JSEN.2003.815793.   DOI
18 Guiseppi-Elie A (2001) Biochip platforms for DNA diagnostics. Biotechnology, 12, 41-47.
19 Leimanis S, Hernandez M, Fernandez S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O et al. (2006) A microarray-based detection system for genetically modified(GM) food ingredients. Plant Molecular Biology, 61(1-2), 123-139. https://doi.org/10.1007/s11103-005-6173-4.   DOI
20 Alcantara GB, Barison A, Santos MDS, Santo LPS, de Toledo JFF, Ferreira AG (2010) Assessment of genetically modified soybean crops and different cultivars by Fourier transform infrared spectroscopy and chemometric analysis. Orbital: The Electronic Journal of Chemistry, 2(1), 41-52. https://doi.org/10.17807/orbital.v2i1.120.
21 Liu W, Liu C, Chen F, Zheng L (2016) Discrimination of transgenic soybean seeds by terahertz spectroscopy. Scientific Reports, 6, 35799. https://doi.org/10.1038/srep35799.   DOI
22 Xie L, Ying Y, Ying T, Yu H, Fu X (2007) Analytica Chimica Acta, 584(2), 379-384. https://doi.org/10.1016/j.aca.2006.11.071.   DOI
23 James D, Schmidt AM, Wall E, Green M, Masri S (2003) Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis. Jouranl of Agricultural and Food Chemistry, 51(20), 5829-5834. https://doi.org/10.1021/jf0341159.   DOI
24 Luna AS, da Silva AP, Pinho JSA, Ferre J, Boque R (2013) Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 100, 115-119. https://doi.org/10.1016/j.saa.2012.02.085.   DOI
25 Zhu S, Liang J, Yan L (2010) Study on rapid identification methods of transgenic rapeseed oil based on near infrared spectroscopy. International Conference on Computer and Computing Technologies in Agriculture, pp. 633-640, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18336-2_77.
26 Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307. https://doi.org/10.1007/s12571-011-0140-5.   DOI
27 Redig P, Schmulling T, Van Onckelen H (1996) Analysis of cytokinin metabolism in ipt transgenic tobacco by liquid chromatography-tandem mass spectrometry. Plant Physiology, 112(1), 141-148. https://doi.org/10.1104/pp.112.1.141.   DOI
28 Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Research, 28(16), 3011-3016. https://doi.org/10.1093/nar/28.16.3011.   DOI
29 Obeid PJ, Christopoulos TK, Ionnou PC (2004) Rapid analysis of genetically modified organisms by inhouse developed capillary electrophoresis chip and laser-induced fluorescence system. Electrophoresis, 25(6), 922-930. https://doi.org/10.1002/elps.200305772.   DOI
30 Jastrzȩbska A, Brudka B, Szumanski T, Szlyk E (2003) Determination of phosphorus in food samples by Xray fluorescence spectrometry and standard spectrophotometric method. Food Chemistry, 83(3), 463-467. https://doi.org/10.1016/S0308-8146(03)00225-5.   DOI
31 Chen J, Arnold MA, Small GW (2004) Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions. Analytical Chemistry, 76(18), 5405-5413. https://doi.org/10.1021/ac0498056.   DOI
32 Chen H, Pan T, Chen J, Lu Q (2011) Waveband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods. Chemometrics and Intelligent Laboratory Systems, 107(1), 139-146. https://doi.org/10.1016/j.chemolab. 2011.02.008.   DOI
33 Pan T, Chen Z, Chen J, Liu Z (2012) Near-infrared spectroscopy with waveband selection stability for the determination of COD in sugar refinery wastewater. Analytical Methods, 4(4), 1046-1052. https://doi.org/10.1039/C2AY05856A.   DOI
34 Pan T, Liu J, Chen, J, Zhang G, Zhao Y (2013) Rapid determination of preliminary thalassaemia screening indicators based on near infrared spectroscopy with wavelength selection stability. Analytical Methods, 5(17), 4355-4362. https://doi.org/10.1039/C3AY40732B.   DOI
35 Bajai S, Mohanty A (2005) Recent advances in rice biotechnology-Towards genetically superior transgenic rice. Plant Biotechnology Journal, 3(3), 275-307. https://doi.org/10.1111/j.1467-7652.2005.00130.x.   DOI
36 Agapito-Tenfen SZ, Vilperte V, Benevenuto RF, Rover CM, Traavik TI, Nodari RO (2014) Effect of stacking insecticidal cry and herbicide tolerance epsps transgenes on transgenic maize proteome. BMC Plant Biology, 14(1), 346. https://doi.org/10.1186/s12870-014-0346-8.   DOI
37 Guo H, Chen J, Pan T, Wang J, Cao G (2014) Vis-NIR wavelength selection for non-destructive discriminant analysis of breed screening of transgenic sugarcane. Analytical Methods, 6(21), 8810-8816. https://doi.org/10.1039/C4AY01833H.   DOI
38 Lu BR, Snow AA (2005) Gene flow from genetically modified rice and its environmental consequences. BioScience, 55(8), 669-678. https://doi.org/10.1641/0006-3568(2005)055[0669:GFFGMR]2.0.CO;2.   DOI
39 Huang J, Hu R, Rozell S, Pray C (2005) Insect-resistant GM rice in farmer'fields: Assessing productivity and health effects in China. Science, 308(5722), 688-690. https://doi.org/10.1126/science.1108972.   DOI
40 Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K (2002) An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant and Cell Physiology, 43(7), 751-758. https://doi.org/10.1093/pcp/pcf087.   DOI
41 Peng Y, Lu R (2007) Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. Journal of Food Engineering, 82, 142-152. https://doi.org/10.1016/j.jfoodeng.2006.12.027.   DOI
42 Feng YZ, Sun DW (2012) Application of hyperspectral imaging in food safety inspection and control: A review. Critical Reviews in Food Science and Nutrition, 52(11), 1039-1058. https://doi.org/10.1080/10408398.2011.651542.   DOI
43 Hao Y, Geng P, Wu W, Wen Q, Rao M (2019) Identification of rice varieties and transgenic characteristics based on near-infrared diffuse reflectance spectroscopy and chemometrics. Molecules, 24(24), 4568. https://doi.org/10.3390/molecules24244568.   DOI
44 Qin Z, Zhang M (2005) Dectection of rice sheath blight for in-season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 7(2), 115-128. https://doi.org/10.1016/j.jag. 2005.03.004.   DOI
45 Zhang JH, Wang K, Baiey JS, Wang RC (2006) Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere, 16(1), 108-117. https://doi.org/10.1016/S1002-0160(06)60032-5.   DOI
46 Zhang H, Yao XG, Zhang XB, Zhu LL, Ye ST, Zheng KF, Hu WQ (2008) Measurement of rice leaf chlorophyll and seed nitrogen contents by using multispectral imagine. Chinese Journal of Rice Science, 5, 555-558.
47 Du YP, Liang YZ, Jiang JH, Berry RJ, Ozaki Y (2004) Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares. Analytica Chimica Acta, 501(2), 183-191. https://doi.org/10.1016/j.aca.2003.09.041.   DOI
48 Liu Z, Liu B, Pan T, Yang J (2013) Determination of amino acid nitrogen in tuber mustard using nearinfrared spectroscopy with waveband selection stability. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 102, 269-274. https://doi.org/10.1016/j.saa.2012.10.006.   DOI
49 Tao P, Zhen-Tao W, Hua-Zhou C (2012) Waveband optimization for near-infrared spectroscopic analysis of total nitrogen in soil. Chinese Journal of Analytical Chemistry, 40(6), 920-924. https://doi.org/10.3724/SP.J.1096.2012.10987.   DOI
50 Jiang JH, Berry RJ, Siesler HW, Ozaki Y (2002) Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and nearinfrared spectroscopic data. Analytical Chemistry, 74 (14), 3555-3565. https://doi.org/10.1021/ac011177u.   DOI
51 Xie J, Pan T, Chen JM, Chen HZ, Ren XH (2010) Joint optimization of Savitzky-Golay smoothing models and partial least squares factors for near infrared spectroscopic analysis of serum glucose. Chinese Journal of Analytical Chemistry, 38, 342-346. https://doi.org/10.3724/SP.J.1096.2010.00342.   DOI
52 Pan T, Liu J, Chen J, Zhang G, Zhao Y (2013) Rapid determination of preliminary thalassaemia screening indicators based on near-infrared spectroscopy with wavelength selection stability. Analytical Methods, 5(17), 4355-4362. https://doi.org/10.1039/C3AY40732B.   DOI
53 Xie L, Ying Y, Ying T, Yu H, Fu X (2007) Discrimination of transgenic tomatoes based on visible/nearinfrared spectra. Analytica Chimica Acta, 584(2), 379-384. https://doi.org/10.1016/j.aca.2006.11.071.   DOI
54 Clarke MA, Arias ER, McDonals-Lewis C (1992) Near infrared analysis in the sugarcane factory. pp. 244-264, Sugary Azucar Press at Ruspam Communication Inc., LA, USA.
55 Gowen, AA, O'Donnell CP, Cullen PJ, Downey G, Frias JM (2007) Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends in Food Science &Technology, 18(12), 590-598. https://doi.org/10.1016/j.tifs. 2007.06.001.   DOI
56 Kim MS, Lefcourt AM, Chao K, Chen YR, Kim I, Chan DE (2002) Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging. Transactions of the American Society of Agricultural and Biological Engineers, 45(6), 2027-2037. https://doi.org/10.13031/2013.11414.
57 García-Molina MD, García-Olmo J, Barro F (2016) Effective identification of low-gliadin wheat lines by near infrared spectroscopy (NIRS): Implications for the development and analysis of foodstuffs suitable for celiac patients. PLoS One, 11(3), e0152292. https://doi.org/10.1371/jouralpone.0152292.   DOI
58 Davies AMC (2005) An introduction to near infrared spectroscopy. NIR News, 16(7), 9-11. https://doi.org/10.1255/nirn.853.   DOI
59 Hof M (2003) Basics of optical spectroscopy. Handbook of Spectroscopy, 1, 39-47.
60 Abrams SM, Shenk JS, Westerhaus MO, Barton FE (1987) Determination of forage quality by nearinfrared reflectance spectroscopy: Efficiency of broad based calibration equations. Journal of Diary Science, 70(4), 806-813. https://doi.org/10.3168/jds.S0022-0302(87)80077-2.   DOI
61 Oh S, Lee MC, Choi YM, Lee S, Oh M, Ali A, Chae B, Hyun DY (2017) Development of near-infrared spectroscopy(NIRS) model for amylose and crude protein contents analysis in rice germplasm. Korean Journal of Plant Resources, 30(1), 38-49. https://doi.org/10.7732/kjpr.2016.30.1.038.   DOI
62 Williams P, Norris K (1987) Near-Infrared technology in agricultural and food industries, p. 330, American Association of Cereal Chemists, Inc., St. Paul, Minnesota, USA. ISBN: 091325049X.
63 Chung HI, Kim HJ (2000) Near-infrared spectroscopy: principles. Analytical Science & Technology, 13(1), 1001-1014.
64 Kim YB (1996) NIRS for food analysis(I). Buletin of Food Technology, 9(1), 24-37.
65 Lafargue ME, Feinberg M, Daudin JJ, Rutledge DN (2003) Detection of heterogeneous wheat samples using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 11(2), 109-121. https://doi.org/10.1255/jnirs.359.   DOI
66 Dissing BS, Nielsen ME, Ersboll BK, Frosch S (2011) Multispectral imaging for determination of astaxanthin concentration in salmonids. PLoS One, 6(5), e19032. https://doi.org/10.1371/journal.pone.0019032.   DOI
67 Dissing BS, Papadopoulou OS, Tassou C, Ersboll BK, Carsensen JM, Panagou EZ, Nychas GJ (2013) Using multispectral imaging for spoilage detection of pork meat. Food and Bioprocess Technology, 6(9), 2268-2279. https://doi.org/10.1007/s11947-012-0886-6.   DOI
68 Lu R (2004) Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technology, 31(2), 147-157. https://doi.org/10.1016/j.postharvbio.2003.08.006.   DOI
69 Peng Y, Lu R (2006) Improving apple fruit firmness predictions by effective correction of multispectral scattering images. Postharvest Biology and Technology, 41(3), 266-274. https://doi.org/10.1016/j.postharvbio.2006.04.005.   DOI
70 Lleo L, Barreiro P, Ruiz-Altisent M, Herrero A (2009) Multispectral images of peach related to firmness and maturity at harvest. Journal of Food Engineering, 93(2), 229-235. https://doi.org/10.1016/j.jfoodeng.2009.01.028.   DOI
71 Fearn T, Riccicoli C, Garrido-Varo A, Guerrero-Ginel JE (2009) On the geometry of SNV and MSC. Chemometrics and Intelligent Laboratory Systems, 96(1), 22-26. https://doi.org/10.1016/j.chemolab.2008.11.006.   DOI
72 Purwanto YA, Sari HP, Budiastra IW (2015) Effects of preprocessing techniques in developing a calibration model for soluble solid and acidity in 'Gedong Gincu' mango using NIR spectroscopy. International Journal of Engineering and Technology, 7(5), 1921-1927.
73 Geladi P, MacDougall D, Martens H (1985) Linearization and scatter-correction for near-infra red reflectance spectra of meat. Applied Spectroscopy, 39(3), 491-500.   DOI
74 Dhanoa MS, Lister SJ, Sanderson R, Barnes RJ (1994) The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. Journal of Near Infrared Spectroscopy, 2(1), 43-47. https://doi.org/10.1255/jnirs.30.   DOI
75 Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772-777. https://doi.org/10.1366/0003702894202201.   DOI
76 Savitzky A, Golay MJE (1964) Smoothing and identification of data by simplified least squares procedure. Analytical Chemistry, 36(8), 1627-1639.   DOI
77 Luo J, Ying K, Bai J (2005) Savitzky-Golay smoothing and differentiation filter for even number data. Signal Processing, 85(7), 1429-1434. https://doi.org/10.1016/j.sigpro.2005.02.002.   DOI
78 Rinnan A, Norgaard L, van den Berg F, Thygesen J, Bro R, Engelsen SB (2009) Infrared spectroscopy for food quality analysis and control. pp 38-39, Elsevier Inc. ISBN: 978-0-12-374136-3.
79 Sun X, Chen KJ, Maddock-Carlin KR, Anderson VL, Lepper AN, Schwartz CA, Keller WL, Ilse BR, Magolski JD et al. (2012) Predicting beef tenderness using color and multispectral image texture features. Meat Science, 92(4), 386-393. https://doi.org/10.1016/j.meatsci.2012.04.030.   DOI
80 Lokke MM, Seefeldt HF, Skov T, Edelenbos M (2013) Color and textural quality of packaged wild rocket measured by multispectral imaging. Postharvest Biology and Technology, 75, 86-95. https://doi.org/10.1016/j.postharvbio.2012.06.018.   DOI
81 Kobayashi T, Kanda E, Kitada K, Ishiguro K, Torigoe Y (2001) Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology, 91(3), 316-323. https://doi.org/10.1094/PHYTO.2001.91.316.   DOI