Browse > Article
http://dx.doi.org/10.5338/KJEA.2018.37.4.32

Phylogeny of Yeasts Isolated from the Flower of Aster spathulifolius Maxim. and Screening of Biosurfactant Producers  

Kim, Jong-Shik (Gyeongbuk Institute for Marine Bio-Industry)
Kim, Dae-Shin (World Heritage Office, Jeju Special Self-Governing Provincial Government)
Publication Information
Korean Journal of Environmental Agriculture / v.37, no.4, 2018 , pp. 312-316 More about this Journal
Abstract
BACKGROUND: Yeast biotechnology finds applications in various industries. Hence, we sought to explore the yeasts associated with the flower of Aster spathulifolius Maxim. This study aimed to isolate yeasts from the flower of the plant and screen for biosurfactant-producing yeasts. METHODS AND RESULTS: We collected flowers of Aster spathulifolius Maxim. and performed pure isolation using four types of media. In total, 117 strains belonging to 4 genera, namely, Cryptococcus (75 strains), Aureobasidium pullulans (30 strains), Candida (11 strains), and Rhodotorula (1 strain), were isolated and identified by ITS sequencing. Upon in-depth analysis, Cryptococcus, the most dominant genus (75 strains) was categorized into the 'Unknown group'. Upon in-depth analysis of A. pullulans, we discovered the 'Unknown group I' (27 strains) and the 'Unknown group II' (2 strains), which have not been reported previously. Two A. pullulans isolates with potent surfactant activity were selected via the screening procedure. CONCLUSION: In this study, a total of 117 strains were isolated from the flower of Aster spathulifolius Maxim. In addition, two biosurfactant-producing yeasts were identified from among the isolated yeasts.
Keywords
A. pullulans; Aster spathulifolius Maxim.; Biosurfactant; Yeast;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Certik, M., Breierova, E., & Jursikova, P. (2005). Effect of cadmium on lipid composition of Aureobasidium pullulans grown with added extracellular polysaccharides. International Biodeterioration & Biodegradation, 55(3), 195-202.   DOI
2 Chin, I. S., Kim, Y. H., Yun, W. K., Park, N. H., & Kim, J. S. (2017). Phylogeny of marine yeast isolated form coastal seawater in the East sea of Korea. Korean Journal of Environmental Agriculture, 36(2), 129-134.   DOI
3 Deak, T. (2009). Ecology and biodiversity of yeasts with potential value in biotechnology. Yeast biotechnology: diversity and applications (eds. Satyanarayana, T., and Kunze, G.), pp. 151-168, Springer Science + Business Media B. V., Dordrecht.
4 Kim, J. S., & Kim, D. S. (2015a). Phylogeny of the yeast species isolated from wild tiger lily (Lilium lancifolium Thunb.). Korean Journal of Environmental Agriculture, 34(2), 149-154.   DOI
5 Kim, J. S., & Kim, D. S. (2015b). Yeasts in the flowers of wild fleabane [Erigeron annus (L.) Pers]. Korean Journal of Environmental Agriculture, 34(3), 254-259.
6 Kim, J. S., Lee, I. K., & Yun, B. S. (2015). A novel biosurfactant produced by Aureobasidium pullulans L3-GPY from a tiger lily wild flower, Lilium lancifolium Thunb. PLoS One, 10(4), e0122917.   DOI
7 Kim, J. S., Lee, I. K.., Kim, D. W., & Yun, B. S. (2016). Aureosurfactin and 3-deoxyaureosurfactin, novel biosurfactants produced by Aureobasidium pullulans L3-GPY. Journal of Antibiotics. 69(10), 759-761.   DOI
8 Kim, J. S., Lee, I. K., & Yun, B. S. (2018). Pullusurfactans A-E, new biosurfactants produced by Aureobasidium pullulans A11211-4-57 from a fleabane, Erigeron annus (L.) pers. Journal of Antibiotics, 71(11), 920-926.   DOI
9 Leathers, T. D., Rich, J. O., Anderson, A. M., & Manitchotpisit, P. (2013). Lipase production by diverse phylogenetic clades of Aureobasidium pullulans. Biotechnol Letters, 35(10), 1701-1706.   DOI
10 Lee, T. B. (2003). Coloured flora of Korea. Hyangmunsa, Seoul, Korea.
11 Lee, W. T. (1996). Coloured standard illustrations of Korean plants. Academy Publishing Co., Seoul, Korea.
12 Rich, J. O., Manitchotpisit, P., Peterson, S. W., & Leathers, T. D. (2011). Laccase production by diverse phylogenetic clades of Aureobasidium pullulans. Rangsit Journal of Arts and Sciences, 1(1), 41-47.
13 Ma, Z. C., Chi, Z., Geng Q., Zhang, F., & Chi, Z. (2012). Disruption of the pullulan synthetase gene in siderophore-producing Aureobasidium pullulans enhances siderophore production and simplifies siderophore extraction. Process Biochemistry 47(12), 1807-1812.   DOI
14 Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology 73, 56-62.   DOI
15 Nagata, N., Nakahara, T., & Tabuchi, T. (1993). Fermentative production of poly (${\beta}$-L-malic acid), a polyelectrolytic biopolyester, by Aureobasidium sp. Bioscience, Biotechnology, and Biochemistry, 57(4), 638-642.   DOI
16 Prasongsuk, S., Ployngam, S., Wacharashindhu, S., Lotrakul, P., & Punnapayak, H. (2013). Effects of sugar and amino acid supplementation on Aureobasidium pullulans NRRL58536 antifungal activity against four Aspergillus species. Applied Microbiology and Biotechnology, 97(17), 7821-7830.   DOI
17 Price, N. P., Manitchotpisit, P., Vermillion, K. E., Bowman, M. J., & Leathers, T. D. (2013). Structural characterization of novel extracellular liamocins (mannitol oils) produced by Aureobasidium pullulans strain NRRL 50380. Carbohydrate Research, 370, 24-32.   DOI
18 Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.
19 Turk, M., Mejanelle, L, Sentjure, M., Grimalt, J. O., Gunde-Cimerman, N., & Plemenitas, A. (2004). Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles. 8(1), 53-61.   DOI
20 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739.   DOI
21 Yun, K. W., & Kim, M. Y. (2010). Korean medicinal plants. Korea. pp. 502-503, Shinkwang Publishing Co., Seoul.
22 Liu, S., & Steinbuchel, A. (1996). Investigation of poly (${\beta}$-L-malic acid) production by strains of Aureobasidium pullulans. Applied Microbiology and Biotechnology, 46(3), 273-278.   DOI
23 Zan, Z., & Zou, X. (2013). Efficient production of polymalic acid from raw sweet potato hydrolysate with immobilized cells of Aureobasidium pullulans CCTCC M2012223 in aerobic fibrous bed bioreactor. Journal of Chemical Technology & Biotechnology, 88(10), 1822-1827.   DOI
24 Zou, X., Zhou, Y., & Yang, S. T. (2013). Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnology and Bioengineering, 110(8), 2105-2113.   DOI