Browse > Article
http://dx.doi.org/10.5338/KJEA.2010.29.3.227

Effects of Fertigation with Pig Slurry on Growth and Yield of Red pepper  

Lim, Tae-Jun (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA)
Lee, In-Bog (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA)
Kang, Seok-Beom (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA)
Park, Jin-Myeon (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA)
Hong, Soon-Dal (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Korean Journal of Environmental Agriculture / v.29, no.3, 2010 , pp. 227-231 More about this Journal
Abstract
Slurry composting biofiltration(SCB) is considered as a treatment to produce a better fertilizer resource than raw pig slurry as it reduces odor and improves nutrients imbalance. For the agricultural use of SCB slurry as a nutrient source with minimum environmental impact, it is important to investigate the effect of different rate of SCB slurry application on nutrient (particularly for nitrogen) uptake and growth of crops. This study was conducted to investigate the influence of fertigation using pig slurry(PS) on growth and yield of red pepper and to evaluate the appropriate PS concentration in fertigation for soils with different nitrate concentration. To evaluate the effects of fertigation applied PS as a substitute of chemical fertilizer(CF), a single application of three different concentrations of PS: $N_{0.5}$ (43 mg/L), $N_{1.0}$ (86 mg/L) and $N_{1.5}$ (131 mg/L) were compared with CF $N_{1.0}$ (89 mg/L) as a control nitrogen fertilizer. Statistical analysis showed that the growths of red pepper were not affected by treatments. In addition, the yields were no significant difference among treatments, though the highest yield was obtained in PS $N_{1.0}$ by 20,580 kg/ha. In soil chemical properties, nitrate nitrogen on soil of between PS N1.0 and CF $N_{1.0}$ treatment showed similar patterns although they were higher than the preplant nitrogen content. Also, there was no significant difference in yield of red pepper between PS and CF treatment applied as fertigation on soils where nitrate nitrogen contents of each soil contains 10, 100 and 200 mg/kg respectively. Consequently, the application of PS, such as SCB, as a substitute of CF is available for growth and yield of red pepper, there could be accordingly estimated the optimal fertigation concentration of PS for red pepper cultivation.
Keywords
Fertigation; Pig slurry; Red pepper; Slurry composting biofiltration(SCB);
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 NIAST. 2000. Method of soil and plant analysis, National Institute of Agricultural Science and Technology. RDA, Suwon, Korea.
2 Paschold, J. S., Wienhold, B. J., McCallister, D. L., Ferguson, R. B., 2008. Crop nitrogen and phosphorus utilization following application of slurry from swine fed traditional or low phytate corn diets, Agron. J. 100, 997-1004.   DOI   ScienceOn
3 RDA (Rural Development Administration). 2007. Research accomplishments of recycling technology from livestock manure, RDA, Suwon, Korea. pp. 9-21.
4 Lee, C S., Shin, K Y., Lee, J. T., Lee, G. J., 2003. Determination of nitrogen application level for Chinese cabbage with application of poultry manure compost in highland, Korean J. Soil Sci. Fert. 36(5), 280-289.
5 Lee, I.B., Lim, J.H., Park, J.M., 2007. Effect of reduced nitrogen fertigation rates on growth and yield of tomato, Korean. J. Environ. Agric. 26, 306-312.   과학기술학회마을   DOI   ScienceOn
6 Lee, J. T., Ha, I. J., Kim, H. D., Moon, J. S., Kim, W. I., Song, W. D., 2006. Effect of liquid pig manure on growth, nutrient uptake of onion and chemical properties in soil, Kor. J. Hort. Sci. Technol. 24(2), 148-156.
7 Lim, J. H., Lee, I. B., Kim, H. L., 2001. A criteria of nitrate concentration in soil solution and leaf petiole juice for fertigation of cucumber (Cucumis sativus L.) under greenhouse cultivation, Korean J. Soil Sci. Fert. 34(5), 316-325.
8 Lim, T. J., Hong, S. D., Kim, S. H., Park, J. M., 2008. Evaluation of yield and quality from red pepper for application rates of pig slurry composting biofiltration, Korean. J. Environ. Agric. 27(2), 171-177.   과학기술학회마을   DOI   ScienceOn
9 Nakano, A., Uehara, Y., Yamauchi, A., 2003. Effect of organic and inorganic fertigation on yield, 15N values, and C values of tomato (Lycopersicon esculentum Mill. Cv. saturn), Plant and Soil. 255, 343-349.   DOI   ScienceOn
10 Lim, T. J., Hong, S. D., Kang, S. B., Park, J. M., 2009. Evaluation of the preplant optimum application rates of pig slurry composting biofiltration for Chinese cabbage, Kor. J. Hort. Sci. Technol. 27(4), 572-577.
11 Kang, B G., Kim, H. J., Lee, G. J., Park, S. G., 2004. Determination of the optimum application rate of pig slurry for red pepper cultivation, Korean J. Soil Sci. Fert. 37(6), 388-395
12 Kang, S.S., Hong, S.D., 2004. Estimation of optimum application rate of nitrogen fertilizer based on soil nitrate concentration for tomato cultivation in plastic film house, Korean J. Soil Sci. Fert. 37(2), 74-82
13 Dauden, A., Quilez, D., 2004. Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment, Europ. J. Agron. 21, 7-19.   DOI   ScienceOn
14 Kirda, C., Baytorun, N., Derici, M.R., Dasgan, H.Y., 2003. Nitrogen fertilizer recovery and yield response of greenhouse grown and fertigated tomato to root -zone soil water tension, Turk. J. Agric. For. 27, 323-328.
15 Kwak, H. K., Seong, K. S., Lee, N. J., Lee, S. B., Han, M. S., Roh, K. A., 2003. Changes in chemical properties and fauna of plastic film house soil by application of chemical fertilizer and composted pig manure, Korean J. Soil Sci. Fert. 36(5), 304-310.