Browse > Article
http://dx.doi.org/10.5338/KJEA.2010.29.2.184

Biotransformation of Aldrin and Chlorpyrifos-methyl by Anabaena sp. PCC 7120  

Park, Byeoung-Soo (Research Station, Nanotoxtech. Inc.)
Lee, Sung-Eun (Research Station, Nanotoxtech. Inc.)
Publication Information
Korean Journal of Environmental Agriculture / v.29, no.2, 2010 , pp. 184-188 More about this Journal
Abstract
A cyanobacteria species, Anabaena sp. PCC 7120, was tested to assess its biotransformation ability on two widely used insecticides, aldrin and chlorpyrifos-methyl, in the culture medium. The blue-green alga metabolized aldrin mainly to dieldrin by an epoxidation reaction with the participation of cytochrome P450-dependent monooxygenase in the cyanobacteria. The blue-green alga also produced chlorpyrifosmethyl oxon as a primary metabolite from chlorpyrifos-methyl via a desulfuration reaction, presumably conducted by cytochrome P450-dependent monooxygenase. Therefore, two insecticides might be possibly dissipated by cytochrome P450-dependent monooxygenases in the blue-green algae in the contaminated environments.
Keywords
Anabaena sp. PCC 7120; aldrin; chlroyrifos-methyl; cytochrome P450-dependent monooxygenase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Han, S.O., New, P.B., 1994. Effect of water availability on degradation of 2,4-dichlophenoxyacetic acid (2,4-D) by soil microorganism, Soil Biol. Biochem. 26, 1689-1697.   DOI   ScienceOn
2 Huber, G. K., 1986. Organophosphorus and carbamate residues in water, pp. 412-417. In H. U. Bergemeyer (ed.), Methods of enzymatic analysis, vol. 12. Academic Press, New York.
3 Khan, S.U., 1980. Pesticides in the soil environment. Amsterdam, Elsevier Scientific Publishing Co., Amsterdam.
4 Abou-Waly, H., Abou-Setta, M.M., Nigg, H.N., Mallory, L.L., 1991. Growth response of freshwater algae, Anabaena flos-aquae and Selenastrum capricornutum to atrazine and hexazinone herbicide, Bull. Environ. Contam. Toxicol. 46, 223-229.   DOI
5 Awasthi, N., Ahuja, R., Kumar, A., 2000. Factors influencing the degradation of soil-applied endosulfan isomers, Soil Biol. Biochem. 32, 1697-1705.   DOI   ScienceOn
6 Gold, R.E., Howell Jr, H.N., Jordan, E.A., 1993. Horizontal and vertical distribution of chlorpyrifos termiticide applied as liquid or foam emulsion. pp. 140-155. In K. D. Racke and A. R. Leslie (eds.), ACS Symposium Series 522, American Chemical Society, Washington, DC.
7 Baskaran, S., Kookana, R.S., Naidu, R., 1999. Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates, Pestic. Sci. 55, 1222-1228.
8 Baxter, R.M., 1990. Reductive dechlorination of certain chlorinated organic compounds by reduced hematin compared with their behavior in the environment, Chemosphere 21, 451-458.   DOI   ScienceOn
9 Cerniglia, C.E., Van Baalen, C., Gibson, D.T., 1980. Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM, J. Gen. Microbiol. 116, 485-494.
10 Meister, R., 1989. Farm chemicals handbook. Meister Publishing, Willoughby, OH, USA.
11 Menzie, C. M., 1969. Metabolism of pesticides. pp. 487. U. S. Fish and Wildlife Service Specific Scientific report-Wildlife No. 127, U. S. Govt. Printing Office, Washington D. C.
12 Mohapatra, P.K., Mohanty, R.C., 1992. Growth pattern changes of Chlorella vulgaris and Anabaena dolilum due to toxicity of dimethoate and endosulfan, Bull. Environ. Contam. Toxicol. 49, 576-581.
13 Pavlostathis, S.G.., Jackson, G. H., 1999. Biotransformion of 2,4,6-trinitrotoln in Anabaena sp. cultures, Environ. Toxicol. Chem. 18, 412-419.   DOI
14 Racke, K.D., Fontaine, D.D., Yoder, R.N., Miller, J.R., 1994. Chlorpyrifos degradation in soil at termiticidal application rates, Pestic. Sci. 42, 43-51.   DOI   ScienceOn
15 Racke, K.D., Steele, K.P., Yoder, R.N., Dick, W.A., Avidov, E., 1996. Factors affecting the hydrolytic degradation of chlorpyrifos in soil, J. Agric. Food. Chem. 44, 1582-1592.   DOI   ScienceOn
16 Kuritz, T., Wolk, C.P., 1995. Use of filamentous cyanobacteria for biogdegradation of organic pollutants, Appl. Environ. Microbiol. 61, 234-238.
17 Sutherlund, T.D., Horne, I., Lacey, M.J., Harcourt, R.L., Russell, R.J., Oakeshtt, J.G., 2000. Enrichment of an endosulfan-degrading mixed bacterial culture, Appl. Environ. Microbiol. 66, 2822-2828.   DOI
18 Yan, G.A., Jiang, J.W., Wu, G., Yan, X., 1998. Disappearance of linear alkylbenzene sulfinate from different cultures with Anabaena sp. HB 1017, Bull. Environ. Contam. Toxicol. 60, 329-334.   DOI
19 Megharaj, M., Madhavi, D.R., Sreenivasulu, C., Umamaheswari, A., Venkateswarlu, K., 1994. Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria, Bull. Envrion. Contam. Toxicol. 53, 292-297.
20 Megharaj, M., Venkateswarlu, K., Rao, A.S., 1987, Metabolism of monocrotophos and quinalphos by algae isolated from soil, Bull. Envrion. Contam. Toxicol. 39, 251-256.   DOI
21 Kuritz, T., Bocanera, L.V., Riveria, N.S., 1997. Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the nir operon, J. Bacteriol. 179, 3368-3370.
22 Lee, S.E., Lees, E.M. 2002. Biochemical mechanisms of resistance in strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) resistant to malathion and chlorpyrifos-methyl, J. Econ. Entomol. 94, 706-713.
23 Mackinney, G.., 1941. Absorption of light by chlorophyll solutions, J. Biol. Chem. 140, 315-322.