Browse > Article
http://dx.doi.org/10.5338/KJEA.2005.24.2.146

The Effects of Onion Extracts on Mercury-Induced Toxicity and Lipid Peroxidation in Rat Hepatocyte Primary Culture  

Rhim, Tae-Jin (Division of Environment and Biosystem, College of Life Science and Natural Resources, Sangji University)
Lim, Sang-Cheol (Division of Environment and Biosystem, College of Life Science and Natural Resources, Sangji University)
Publication Information
Korean Journal of Environmental Agriculture / v.24, no.2, 2005 , pp. 146-152 More about this Journal
Abstract
The objective of present study was to investigate the effect of onion extracts on mercuryinduced cytotoxicity, lipid peroxidation and antioxidant enzyme activities in primary monolayer cultures of rat hepatocytes. Primary cultures of rat hepatocytes were incubated for 6 hr in the presence of various concentrations (0, 1, 5, 10, 30 or 50 ppm) of $HgCl_2$. Cytotoxicity and cell viability were determined by measuring glutamic oxaloacetic transaminase (GOT) activity, lactate dehydrogenase (LDH) activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) value. Lipid peroxidation w as evaluated using thiobarbituric acid reactive substances (TBARS) assay. Effects of onion extract on antioxidant system were determined by measuring catalase, glutathione peroxidase (GSH-Px), glutathione reductase (GSH-Rd) activities as well as DPPH free radical scavenging activity. $HgCl_2$ at the concentration of 10 ppm increased GOT activity and TBARS concentration but decreased %MTT reduction, whereas $HgCl_2$ at the concentration of 30 ppm increased LDH activity, representing that $HgCl_2$ caused cytotoxicity and lipid peroxidation in dose-dependent manner, $HgCl_2$ at the concentration of 30 ppm significantly decreased catalase, GSH-Px and GSH-Rd activities. When primary cultures of rat hepatocytes were incubated with various concentrations (0, 0.01, 0.05, 0.1 or 0.3 mg/ml) of onion extract for 6 hr in the presence of 30 ppm of $HgCl_2$, onion extracts at the concentration of 0.05 mg/ml decreased GOT activity, but increased %MTT reduction by 30 ppm of $HgCl_2$. $HgCl_2-induced$ LDH activity and TBARS concentration were decreased by onion extract at the concentration of 0.01 mg/ml. Taken together, onion extract prevented H$HgCl_2-induced$ hepatocyte injury and lipid peroxidation. Onion extracts at the concentration of 0.1 mg/ml almost or completely inhibited $HgCl_2-induced$ catalase and GSB-Px activities. GSH-Rd activity, however, was not affected by onion extract. Free radical scavengjing activity was increased as concentration of onion extract increased. Onion extract at the concentrion of 5 mg/ml possesed mote than 93% scavenging activity comparing to 100% radical scavenging activity by pyrogallol solution as a reference. These results demonstrate that onion extracts suppressed mercury-induced cytoctoxicity and lipid peroxidation by scavenging free radical and increasing catalase and GSH-Px activities.
Keywords
onion extracts; cytotoxicity; lipid peroxidation; antioxidant enzymes; DPPH; rat hepatocyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods 65, 55-63   DOI   ScienceOn
2 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248-254   DOI   ScienceOn
3 Stohs, S. J. and Bagchi, D. (1995) Oxidative mechanisms in the toxicity of metal ions, Free Radic. Biol. Med. 18, 321-336   DOI   ScienceOn
4 Gstraunthaler, G., Pfaller, W. and Kotanko, P. (1983) Glutathione depletion and in vitro lipid peroxidation in mercury or maleate induced acute renal failure, Biochem. Pharmacol. 32, 2969-2972   DOI   ScienceOn
5 Reitman, S. and Frankel, S. (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases, Am. J. Clin. Pathol. 28, 56-63   DOI
6 Stacey, N. H. and Kappus, H. (1982) Cellular toxicity and lipid peroxidation in response to mercury, Toxicol. Appl. Pharmacol. 63, 29-35   DOI   ScienceOn
7 Chung, A. S., Maines, M. D. and Reynolds, W. A. (1982) Inhibition of the enzymes of glutathione metabolism by mercuric chloride in the rat kidney: reversal by selenium, Biochem. Pharmacol. 31, 3093-3100   DOI   ScienceOn
8 Kendler, B. S. (1987) Garlic (allium sativum) and onion (Allium cepa): a review of their relationship to cardiovascular disease, Prev. Med. 16, 670-685   DOI   ScienceOn
9 Lund, B. O., Miller, D. M. and Woods, J. S. (1993) Studies on Hg(II)-induced $H_2O_2$ formation and oxidative stress in vivo and in vitro in rat kidney mitochondria, Biochem. Pharmacol. 45, 2017-2024   DOI   ScienceOn
10 Kamiski, L. P. (1992) $Hg^{2+}$ and $Cu^+$ are ionophores, mediating Cl/OH exchange in liposomes and rabbit renal brush border membranes, J. Biol. Chem. 267, 19218-19225
11 Vassault, A. (1983) Lactate dehydrogenase: UV-method with pyruvate and NADH. In: Bergmeyer, H. U., Bergmeyer, J. and Grassl, M.(eds), 'Methods of Enzymatic Analysis. III. Enzymes 1: Oxidoreductases, Transferases', Verlag-Chemie, Weinheim, p.118-126
12 Aebi, H. (1984) Catalase in vitro, Methods Enzymol. 105, 121-126   DOI
13 Flohe, L. and Gunzler, W. A. (1984) Assays of glutathione peroxidase, Methods Enzymol. 105, 114-121   DOI
14 Carlberg, I. and Mannervik, B. (1955) Glutathione reductase, Methods Enzymol. 113, 484-490
15 Steel, R. G. D. and Torre, J. H. (1980) Principles and Procedures of Statistics, 2nd ed, McGraw-Hill, New York, p.186-187
16 Stacey, N. H. and Klaassen, C. D. (1981) Comparison of the effects of metals on cellular injury and lipid peroxidation in isolated rat hepatocytes, J. Toxicol. Environ. Health 7, 139-147   DOI   ScienceOn
17 Fridovich, I. (1978) The biology of oxygen radicals, Science 201, 875-879   DOI
18 Fridovich, I. and Frreman, B. (1986) Antioxidant defenses in the lung, Ann. Rev. Physiol. 48, 693-702   DOI   ScienceOn
19 Rall, T. W. and Lehninger, A. L. (1952) Glutathione reductase of animal tissues, J. Biol. Chem. 194, 119-130
20 Guillemette, J., Marion, M., Denizeau, F., Fournier, M. and Brousseau, P. (1993) Characterization of the in vitro hepatocyte model for toxicological evaluation: repeated growth stimulation and glutathione response, Biochem. Cell Biol. 71, 7-13   DOI   ScienceOn
21 Mahboob, M., Shireen, K. F., Atkinson, A. and Khan, A. T. (2001) Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury, J. Environ. Sci. Health B. 36, 687-697   DOI   ScienceOn
22 Dorant, E., van den Brandt, P. A., Goldbohm, R. A. and Sturmans, F. (1996) Consumption of onions and a reduced risk of stomach carcinoma, Gstroenterology 110, 12-20   DOI   ScienceOn
23 Price, K R and Rhodes, M. J. C (1997) Analysis of the major flavonol glycosides present in four varieties of onion (Allum cepa) and changes in composition resulting from autolysis, J. Sci. Food Agri. 74, 331-339   DOI   ScienceOn
24 Chu, Y.-H., Chang, C.-L. and Hsu, H.-F. (2000) Flavonoid content of several vegetables and their antioxidant activity, J. Agric. Food Chem. 44, 3426-3431   DOI   ScienceOn
25 Nuutila, A. M., Puupponen-Pimia, R., Aarni, M. and Oksman-Caldentey, K.-M. (2003) Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity, Food Chem. 81, 485-493   DOI   ScienceOn
26 Patil, B. S. and Pike, L. M. (1995) Distribution of quercetin content in different rings of various coloured onion (Allium cepa L.) cultivars, J. Horticul. Sci. 70, 643-650   DOI
27 Malterud, K. E., Farbrot, T. L., Huse, A. E. and Sund, R. B. (1993) Antioxidant and radical scavenging effects of anthraquinones and anthrones, Pharmacology 47, 77-85   DOI   ScienceOn
28 Sunderman, F. W. Jr., Marzouk, A., Hopfer, S., Zaharia, O. and Reid, M. C. (1985) Increased lipid peroxidation in tissues of nickel chloride-treated rats, Ann. Clin. Lab. Sci. 15, 229-236
29 Seglen, P. O. (1976) Preparation of isolated rat liver cells, Methods Cell BioI. 13, 29-83   DOI
30 Uchiyama, M. and Mihara, M. (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test, Anal. Biochem. 86, 271-278   DOI   ScienceOn
31 Lund, B. O., Miller, D. M. and Woods, J. S. (1991) Mercury-induced $H_O_2$ production and lipid peroxidation in vitro in rat kidney mitochondria, Biochem. Pharmacol. 42, 5181-187
32 Nath, K. A., Croatt, A. J., Likely, S., Behrens, T. W. and Warden, D. (1996) Renal oxidant injury and oxidant response induced by mercury, Kidney Int. 50, 1032-1043   DOI   ScienceOn
33 Hussain, S., Rodgers, D. A., Duhart, H. M. and Ali, S. F. (1997) Mercuric chloride-induced reactive oxygen species and its effect on antioxidant eznymes in different regions of rat brain, J. Envion. Sci. Health B, 32, 395-409   DOI   ScienceOn
34 Fridovich, I. (1983) Superoxide radical: an endogenous toxicant, Annu. Rev. Pharmacol. Toxicol. 23, 239-57   DOI   ScienceOn
35 Harris, E. D. (1992) Regulation of antioxidant enzymes, FASEB J. 6, 2675-2683   DOI
36 Girardi, G. and Elias, M. M. (1995) Mercuric chloride effects on rat renal redox enzymes activities: SOD protection, Free Radic. Biol. Med. 18, 61-66   DOI   ScienceOn
37 Hussain, S., Atkinson, A, Thompson, S. J. and Khan, AI. (1999) Accumulation of mercury and its effect on antioxidant enzymes in brain, liver, and kidneys of mice, J. Environ. Sci. Health. B, 34, 645-660   DOI   ScienceOn
38 Duncan-Achanzar, K. B., Jones, J. T., Burke, M. F., Carter, D. E. and Laird, H. E. (1996) Inorganic mercury chloride-induced apoptosis in the cultured porcine renal cell line LLCC-PK1, J. Pharmacol. Exp. Ther. 277, 1726-1732
39 Ashour, H., Abdel-Rahman, M. and Khodair, A. (1993) The mechanism of methyl mercury toxicity in isolated rat hepatocytes, Toxicol. Lett. 69, 87-96   DOI   ScienceOn
40 Srivastava, K. C. (1986) Onion exerts antiaggregatory effects by altering arachidonic acid metabolism in platelets, Prostaglandins Leukot. Med. 24, 43-50   DOI   ScienceOn
41 Homma-Takeda, S., Kugenuma, Y., Iwamuro, J., Kumagai, Y. and Shimojo, N. (2001) Impairment of speratogenesis in rats by methylmercury: involvement of stage- and cell-specific germ cell apoptosis, Toxicology, 169, 25-35   DOI   ScienceOn
42 Rao, M. V. (1989) Histophysiological changes of sex organs in methylmercury intoxicated mice, Endocrinol. Exper. 23, 55-62
43 Yonaha, M., Itoh, E., Ohbayashi, Y. and Uchiyama, M. (1980) Induction of lipid peroxidation in rats by mercuric chloride, Res. Commun. Chem. Pathol. Pharmacol. 28, 105-112
44 Sarafian, T. and Verity, M. A. (1991) Oxidative mechanisms underlying methyl mercury neurotoxicity, Int. J. Dev. Neurosci. 9, 147-153   DOI   ScienceOn