Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.32.1.57

Elongation Behavior of Polymeric Materials for Membrane Applications Using Molecular Dynamics  

Kang, Hoseong (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University (GNU))
Park, Chi Hoon (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University (GNU))
Publication Information
Membrane Journal / v.32, no.1, 2022 , pp. 57-65 More about this Journal
Abstract
Recently, computer simulation research has been rapidly increasing due to the development of computer and software technology. In particular, various computational simulation results related to polymers, which were previously limited by problems of the number of atoms and model size, are being published. In this study, a study was conducted to analyze the mechanical properties, one of the important properties for using a polymer material as a membrane, using molecular dynamics (MD) simulation. To this end, polyethylene (PE) and polystyrene (PS), which are commercial polymer materials with widely reported related properties, were selected as polymer models and the tensile properties of each polymer were compared through the difference in main chain length. Through the density, radius of gyration, and scattering analysis, it was found that the model produced in this study was in good agreement with the mechanical property trends obtained in the actual experiment. It is expected to enable the prediction of mechanical properties of various polymer materials for membrane fabrication.
Keywords
computer simulation; molecular dynamics; mechanical properties; polymer materials;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. Balani, V. Verma, A. Agarwal, and R. Narayan, "Biosurfaces: a materials science and engineering perspective", John Wiley & Sons, Inc., Hoboken, New Jersey (2015).
2 H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 1 (2016).   DOI
3 H. Sun, P. Ren, and J. Fried, "The COMPASS force field: parameterization and validation for phosphazenes", Comput. Theor. Polym. Sci., 8, 229 (1998).   DOI
4 J.-S. Ryu, T.-B. Jeon, J.-H. Kim, and K.-Y. Chung, "Processing characteristics of the condensed wastewater resulting from food waste disposal using a submerged polyethylene hollow fiber membrane", Membr. J., 20, 127 (2010).
5 C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016).   DOI
6 H. Kang and C. H. Park, "Investigation of gas transport properties of polymeric membranes having different chain lengths via molecular dynamics (MD)", Membr. J., 28, 67 (2018).   DOI
7 C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and E. Drioli, "A simulation study on OH-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): relationship between gas transport properties and free volume morphology", J. Phys. Chem. B, 118, 2746 (2014).   DOI
8 C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864 (2012).   DOI
9 W. D. Callister Jr. and D. G. Rethwisch, "Callister's materials science and engineering", John Wiley & Sons, Inc., Hoboken, New Jersey (2020).
10 A. K. Bhowmick, "Mechanical properties of polymers", Materials Science And Engineering-Volume I, 5, 156 (2009).
11 M. Fixman, "Radius of gyration of polymer chains", The Journal of Chemical Physics, 36, 306 (1962).   DOI
12 K.-S. Chang, Y.-H. Huang, K.-R. Lee, and K.-L. Tung, "Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study", J. Membr. Sci., 354, 93 (2010).   DOI
13 S. Paszkiewicz, A. Szymczyk, A. Zubkiewicz, J. Subocz, R. Stanik, and J. Szczepaniak, "Enhanced Functional properties of low-density polyethylene nanocomposites containing hybrid fillers of multiwalled carbon nanotubes and nano carbon black", Polymers, 12, 1356 (2020).   DOI
14 F. Marinkovic, D. Popovic, J. Jovanovic, B. Stankovic, and B. Adnadjevic, "Methods for quantitative determination of filler weight fraction and filler dispersion degree in polymer composites: Example of low-density polyethylene and NaA zeolite composite", Appl. Phys. A, 125, 1 (2019).   DOI
15 E. Franco-Urquiza, N. Camacho, and M. L. Maspoch, "Tensile properties of LDPE/electrical cable waste blends prepared by melt extrusion process", Afinidad, 74, (2017).
16 H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998).   DOI
17 G. Beaucage, "Approximations leading to a unified exponential/power-law approach to small-angle scattering", J. Appl. Crystallogr., 28, 717 (1995).   DOI
18 S. A. Reemas, and R. Maheswaran, "Effect of EPS volume fraction in buoyancy characteristics of expanded polystyrene/epoxy sandwich composites", Int. J. Mater. Eng., 8, 146 (2017).   DOI
19 J. Fang, Y. Xuan, and Q. Li, "Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals", Sci. China Technol. Sci., 53, 3088 (2010).   DOI
20 M. Ionita, A. M. Pandele, L. E. Crica, and A. C. Obreja, "Preparation and characterization of polysulfone/ ammonia-functionalized graphene oxide composite membrane material", High Perform. Polym., 28, 181 (2016).   DOI
21 S.-T. Kao, Y.-H. Huang, K.-S. Liao, W.-S. Hung, K.-S. Chang, M. De Guzman, S.-H. Huang, D.-M. Wang, K.-L. Tung, and K.-R. Lee, "Applications of positron annihilation spectroscopy and molecular dynamics simulation to aromatic polyamide pervaporation membranes", J. Membr. Sci., 348, 117 (2010).   DOI
22 Y.-W. Kim, D.-H. Cho, S.-Y. Bae, and H. Kumaawa, "Sorption and diffusion of carbon dioxide in polystyrene membrane", Membr. J., 3, 79 (1993).
23 J. H. Lee and C. H. Park, "Effect of force-field types on the proton diffusivity calculation in molecular dynamics (MD) simulation", Membr. J., 27, 358 (2017).   DOI
24 J. M. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, "Molecular dynamics simulation: elementary methods", Comput. Phys., 7, 625 (1993).
25 Y. Jiang, F. T. Willmore, D. Sanders, Z. P. Smith, C. P. Ribeiro, C. M. Doherty, A. Thornton, A. J. Hill, B. D. Freeman, and I. C. Sanchez, "Cavity size, sorption and transport characteristics of thermally rearranged (TR) polymers", Polymer, 52, 2244 (2011).   DOI
26 P. V. Komarov, I. N. Veselov, P. P. Chu, and P. G. Khalatur, "Mesoscale simulation of polymer electrolyte membranes based on sulfonated poly (ether ether ketone) and Nafion", Soft Matter, 6, 3939 (2010).   DOI