Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.1.1

Intrinsic Permeation Properties of Graphene Oxide Membranes for Gas and Ion Separations  

Kim, Hyo Won (Department of Advanced Materials Engineering, Kangwon National University)
Publication Information
Membrane Journal / v.32, no.1, 2022 , pp. 1-12 More about this Journal
Abstract
Graphene oxide (GO) has been considered as a promising membrane material, because of its easy processability and distinct properties, including controllable pore size distribution and diffusion channels. Particularly, the feasibility has been proposed a number of simulation results and proof-of-concept experimental approaches towards GO membranes. That is, GO already shows many outstanding intrinsic properties suitable for promising membrane platforms, such as the minimum membrane thickness and the ability to generate nanopores in the two-dimensional lattices or to create slit-like nanochannels between adjacent sheets. This review will be addressed the important experimental development in GO-based membranes for gas and ion separations, emphasizing on intrinsic transport phenomena, and critical issues for practical applications.
Keywords
membrane; graphene oxide; gas separation; ion transport;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. M. Geise, H. B. Park, A. C. Saglea, B. D. Freeman, and J. E. McGrath, "Water permeability and water/salt selectivity tradeoff in polymers for desalination", J. Membr. Sci., 369, 130-138 (2011).   DOI
2 B. C. Brodie, "XIII. On the atomic weight of graphite", Philosophical Transactions of the Royal Society of London, 149, 249-259 (1859).   DOI
3 B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers", J. Appl. Polym. Sci., 131 (2014).
4 H. W. Kim, H. W. Yoon, B. M. Yoo, J. S. Park, K. L. Gleason, B. D. Freeman, and H. B. Park, "High-performance CO2-philic graphene oxide membranes under wet-conditions", Chem. Commun., 50, 13563-13566 (2014).   DOI
5 G. Bettendorf, "Zur geschichte der endokrinologie und reproduktionsmedizin: 256 biographien und berichte", Springer-Verlag (2013).
6 D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, "Preparation and characterization of graphene oxide paper", Nature, 448, 457-460 (2007).   DOI
7 J. Kim, L. J. Cote, F. Kim, W. Yuan, K. S. Shull, and J. Huang, "Graphene oxide sheets at interfaces", J. Am. Chem. Soc., 132, 8180-8186 (2010).   DOI
8 S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, "Graphene oxide as a practical solution to high sensitivity gas sensing", J. Phys. Chem. C, 117, 10683-10690 (2013).   DOI
9 R. Nair, H. A. Wup, P. N. Jayatami, L. V. Grigorieva, and A. K. Geim, "Unimpeded permeation of water through helium-leak-tight graphene-based membranes", Science, 335, 442-444 (2012).   DOI
10 H. W. Yoon, T. H. Lee, C. M. Doherty, T. H. Choi, J. S. Roh, H. W. Kim, Y. H. Cho, S-H. Do, B. D. Freeman, and H. B. Park, "Origin of CO2-philic sorption by graphene oxide layered nanosheets and their derivatives", J. Phys. Chem. Lett., 11, 2356-2362 (2020).   DOI
11 D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide", ACS nano, 4, 4806-4814 (2010).   DOI
12 U. Hofmann and A. Frenzel, "Quellung von graphit und die bildung von graphitsaure", Ber. Dtsch. Chem. Ges. (A and B Series), 63, 1248-1262 (1930).   DOI
13 T. Nakajima and Y. Matsuo, "Formation process and structure of graphite oxide", Carbon, 32, 469-475 (1994).   DOI
14 F. A. de La Cruz and J. Cowley, "Structure of graphitic oxide", Nature, 196, 468-469 (1962).   DOI
15 G. Ruess, "Uber das graphitoxyhydroxyd (graphitoxyd)", Monatshefte fur Chemie und verwandte Teile anderer Wissenschaften, 76, 381-417 (1947).   DOI
16 W. Scholz and H. Boehm, "Betrachtungen zur struktur des graphitoxids", Z. Anorg. Allg. Chem., 369, 327-340 (1969).   DOI
17 J. H. Kim, Y. Choi, J. Kang, E. Choi, S. E. Choi, O. Kwon, and D. W. Kim, "Scalable fabrication of deoxydenated graphene oxide nanofiltration membrane by continuous slot-die coating", J. Membr. Sci., 612, 118454 (2020).   DOI
18 R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393-1411 (2002).   DOI
19 Y. H. Cho, H. W. Kim, H. D. Lee, J. E. Shin, B. M. Yoo, and H. B. Park, "Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited", J. Membr. Sci., 544, 425-435 (2017).   DOI
20 Y. Han, Z. Xu, and C. Gao, "Ultrathin graphene nanofiltration membrane for water purification", Adv. Funct. Mater., 23, 3693-3700 (2013).   DOI
21 H. B. Park and Y. M. Lee, "Polymeric membrane materials and potential use in gas separation, in Advanced membrane technology and applications", pp. 633-669, John Wiley & Sons, Inc. (2008).
22 R. R. Amirov, J. Shayimova, Z. Nasirova, and A. M. Dimiev, "Chemistry of graphene oxide. Reactions with transition metal cations", Carbon, 116, 356-365 (2017).   DOI
23 K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene", Nature, 490, 192-200 (2012).   DOI
24 D. Shekhawat, D. R. Luebke, and H. W. Pennline, "A review of carbon dioxide selective membranes: A topical report", National Energy Technology Laboratory, Pittsburgh, PA, Morgantown (2003).
25 D. M. Sterescu, L. Bolhuis-Versteeg, N. F. A. van der Vegt, D. F. Stamatialis, and M. Wessling, "Novel gas separation membranes containing covalently bonded fullerenes", Macromol. Rapid Commun., 25, 1674-1678 (2004).   DOI
26 Y. Choi, S.-S. Kim, J. H. Kim, J. Kang, E. Choi, S. E. Choi, J. P. Kim, O. Kwon, and D. W. Kim, "Graphene oxide nanoribbon hydrogel: viscoelastic behavior and use as a molecular separation membrane", ACS Nano, 14, 12195-12202 (2020).   DOI
27 W. Gao, "The chemistry of graphene oxide", in Graphene oxide, pp. 61-95, Springer (2015).
28 J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and Kim, S. O., "Graphene oxide liquid crystals", Angew. Chem., 123, 3099-3103 (2011).   DOI
29 T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dekany, "Evolution of surface functional groups in a series of progressively oxidized graphite oxides", Chem. Mater., 18, 2740-2749 (2006).   DOI
30 M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S., Noro, T. Yamada, H. Kitagawa, and S. Hayami, "Graphene oxide nanosheet with high proton conductivity", J. Am. Chem. Soc., 135, 8097-8100 (2013).   DOI
31 Y. H. Yang, L. Bolling, M. A. Priolo, and J. C. Grunlan, "Super gas barrier and selectivity of graphene oxide polymer multilayer thin films", Adv. Mater., 25, 503-508 (2013).   DOI
32 S. Eigler and A. Hirsch, "Chemistry with graphene and graphene oxide-challenges for synthetic chemists", Angew. Chem. Int. Ed., 53, 7720-7738 (2014).   DOI
33 D.-e. Jiang, V. R. Cooper, and S. Dai, "Porous graphene as the ultimate membrane for gas separation", Nano Lett., 9, 4019-4024 (2009).   DOI
34 H. B. Park, H. W. Yoon, and Y. H. Cho, "Graphene oxide membrane for molecular separation", Graphene Oxide: Fundamentals and Applications, 296 (2016).
35 J. S. Roh, T. H. Choi, T. H. Lee, H. W. Yoon, J. Kim, H. W. Kim, and H. B. Park, "Understanding Gas Transport Behavior through Few-Layer Graphene Oxide Membranes Controlled by Tortuosity and Interlayer Spacing", J. Phys. Chem. Lett., 10, 7725-7731 (2019).   DOI
36 D. W. Boukhvalov, M. I. Katsnelson, and Y.-W. Son, "Origin of anomalous water permeation through graphene oxide membrane", Nano Lett., 13(8), 3930-3935 (2013).   DOI
37 H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91-95 (2013).   DOI
38 R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, "Precise and ultrafast molecular sieving through graphene oxide membranes", Science, 343, 752-754 (2014).   DOI
39 K. M. Cho, H.-J. Lee, Y. T. Nam, Y-J. Kim, C. Kim, K. M. Kang, C. A. R. Torres, D. W. Kim, and H. T. Jung, "Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons", ACS Applied Materials & Interfaces, 11, 27004-27010 (2019).   DOI
40 H. Kim, D. W. Kim, V. Vasagar, H. Ha, S. Nazarenko, and C. J. Ellison, "Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold", Adv. Funct. Mater., 28, 1803172 (2018).   DOI
41 H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. Guo, P. Yang, and B. D. McCloskey, "Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts", Nature Catalysis, 1, 282-290 (2018).   DOI
42 J. Chen, B. Yao, C. Li, and G. Shi, "An improved Hummers method for eco-friendly synthesis of graphene oxide", Carbon, 64, 225-229 (2013).   DOI
43 B. Brodie, "Note sur un nouveau procede pour la purification et la desagregation du graphite", Ann. Chim. Phys., 45, 351-353 (1855).
44 M. Berthelot, "Recherches sur les etats du carbone", Ann. Chim. Phys. 4e serie, 19, 392-426 (1870).
45 V. Kohlschutter and P. Haenni, "Zur kenntnis des graphitischen kohlenstoffs und der graphitsaure", Z. Anorg. Allg. Chem., 105, 121-144 (1919).   DOI
46 W. S. Hummers Jr. and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339-1339 (1958).   DOI
47 W. Cai, R. D. Piner, F. J. Stadermsn, S. J. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stollrt, J. An, D. Chen, and R. S. Ruoff, "Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide", Science, 321, 1815-1817 (2008).   DOI
48 T. Nakajima, A. Mabuchi, and R. Hagiwara, "A new structure model of graphite oxide", Carbon, 26, 357-361 (1988).   DOI
49 D. Hadzi and A. Novak, "Infra-red spectra of graphitic oxide", Trans. Faraday Soc., 51, 1614-1620 (1955).   DOI
50 L. Staudenmaier, "Verfahren zur darstellung der graphitsaure", Berichte der deutschen chemischen Gesellschaft, 31, 1481-1487 (1898).   DOI
51 U. Hofmann and R. Holst, "Uber die Saurenatur und die Methylierung von Graphitoxyd", Ber. Dtsch. Chem. Ges. (A and B Series), 72, 754-771 (1939).   DOI
52 M. Mermoux, Y. Chabre, and A. Rousseau, "FTIR and 13C NMR study of graphite oxide", Carbon, 29, 469-474 (1991).   DOI
53 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The structure of suspended graphene sheets", Nature, 446, 60-63 (2007).   DOI
54 H. B. Park, "Gas separation membranes", Encyclopedia of Membrane Science and Technology, 1-32 (2013).
55 W. J. Koros, and G. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1-80 (1993).   DOI
56 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390-400 (2008).   DOI
57 M. B. Shiflett and H. C. Foley, "Ultrasonic deposition of high-selectivity nanoporous carbon membranes", Science, 285, 1902-1905 (1999).   DOI
58 R. M. De Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710-1711 (1998).   DOI
59 B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, "Aligned multiwalled carbon nanotube membranes", Science, 303, 62-65 (2004).   DOI
60 J. K. Holt, H. G. Park, Y. Wang, M. Staderman, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034-1037 (2006).   DOI
61 S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728-732 (2012).   DOI
62 H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, B. Yu, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95-98 (2013).   DOI
63 O. C. Compton and S. T. Nguyen, "Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials", Small, 6, 711-723 (2010).   DOI
64 K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, and W. Jin, "A graphene oxide membrane with highly selective molecular separation of aqueous organic solution", Angew. Chem., 126, 7049-7052 (2014).   DOI
65 U. Hofmann, A. Frenzel, and E. Csalan, "Die konstitution der graphitsaure und ihre reaktionen", Justus Liebigs Annalen der Chemie, 510, 1-41 (1934).   DOI