Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.6.404

Gas Permeation Characteristics of PEBAX Mixed Matrix Membranes Containing Polyethylenimine-modified GO  

Yi, Eun Sun (Department of Chemical Engineering and Materials Science, Sangmyung University)
Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University)
Publication Information
Membrane Journal / v.31, no.6, 2021 , pp. 404-416 More about this Journal
Abstract
In this study, a mixed matrix membrane was prepared by varying the contents of GO and PEI-GO synthesized in PEBAX2533, and the permeation characteristics of N2 and CO2 were studied. The N2 and CO2 permeability of the PEBAX/GO mixed membrane decreased as the GO content increased, and showed the highest CO2/N2 selectivity of 58.9 at GO 0.3 wt%. For the PEBAX/PEI-GO mixed membrane, the N2 permeability decreased as the PEI-GO content increased, and the CO2 permeability showed a different trend according to the PEI-GO content. Overall, the CO2/N2 selectivity was higher than that of the PEBAX/GO mixed membrane. In particular, PEI-GO 0.3 wt% showed the highest CO2/N2 selectivity of 73.5 among the mixed membranes, and a positive result was obtained as it was located above the Robeson upper bound. This is believed to be due to the molecular sieving channel effect resulting from the original GO structure, the functional groups present in the structure of GO having affinity for CO2, and the effect of amine bound to PEI by modifying GO into PEI.
Keywords
PEBAX; GO; PEI-GO; permeability; selectivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Choi, S. S. Kim, J. H. Kim, J. Kang, E. Choi, S. E. Choi, J. P. Kim, O. Kwon, and D. W. Kim, "Graphene oxide nanoribbon hydrogel: Viscoelastic behavior and use as a molecular separation membrane", ACS Nano, 14, 12195 (2020).   DOI
2 T. Hou, L. Shu, K. Guo, X. Zhang, S. Zhou, M. He and J. Yao, "Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation", Cellulose, 27, 6, 3277 (2020).   DOI
3 H. Tai, Y. Zhen, C. Liu, Z. Ye, G. Xie, X. Du and Y. Jiang, "Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film", Sens. Actuators B: Chem., 230, 501 (2016).   DOI
4 Q. Xin, H. Wu, Z. Jiang, Y. Li, S. Wang, Q. Li, X. Li, X. Lu, X. Cao and J. Yang, "SPEEK/aminefunctionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation", J. Membr. Sci., 467, 23 (2014).   DOI
5 D. Huang, Q. Xin, Y. Ni, Y. Shuai, S. Wang, Y. Li, H. Ye, L. Lin, X. Ding, and Y. Zhang, "Synergistic effects of zeolite imidazole framework@graphene oxide composite in humidified mixed matrix membranes on CO2 separation", RSC Adv., 8, 6099 (2018).   DOI
6 E. A. Feijani, A. Tavassoli, H. Mahdavi, and H. Molavi, "Effective gas separation through graphene oxide containing mixed matrix membranes", J. Appl. Polym. Sci., 46271 (2018).   DOI
7 X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo and H. Wu, "Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes", ACS Appl. Mater. Interfaces, 7, 9, 5528 (2015).   DOI
8 F. Pazani and A. Aroujalian, "Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers", Polym. Test., 81, 106264 (2020).   DOI
9 X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni, "Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture", Energy Fuels, 16, 6, 1463 (2002).   DOI
10 L. Keller, B. Ohs, J. Lenhart, L. Abduly, P. Blanke and M. Wessling, "High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture", Carbon, 126, 338 (2018).   DOI
11 K. Zarshenas, A. Raisi, and A. Aroujalian, "Mixed matrix membranes of nano-zeolite NaX/poly(ether-block-amide) for gas separation applications", J. Membr. Sci., 510, 270 (2016).   DOI
12 G. J. Shin, K. Y. Rhee, and S. J. Park, "Improvement of CO2 capture by graphite oxide in presence of polyethylenimine", Int. J. Hydrogen Energy, 41, 32, 14351 (2016).   DOI
13 D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide", ACS nano, 4, 4806 (2010).   DOI
14 Y. He, Y. Xia, J. Zhao, Y. Song, L. Yi, and L. Zhao, "One-step fabrication of PEI-modified GO particles for CO2 capture", Appl. Phys. A, 125, 160 (2019).   DOI
15 A. Huang and B. Feng, "Facile synthesis of PEI-GO@ ZIF-8 hybrid material for CO2 capture", Int. J. Hydrogen Energy, 43, 4, 2224 (2018).   DOI
16 J. Sanchez-Lainez, M. Ballester-Catalan, E. Javierre-Ortin, C. Tellez and J. Coronas, "Pebax® 1041 supported membranes with carbon nanotubes prepared via phase inversion for CO2/N2 separation", Dalton Trans., 49, 9, 2905 (2020).   DOI
17 R. Casadei, M. G. Baschetti, M. J. Yoo, H. B. Park, and L. Giorgini, "Pebax 2533/graphene oxide nanocomposite membranes for carbon capture", Membranes, 10, 188 (2020).   DOI
18 J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, and G. N. Karanikolos, "CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions", Micropor. Mesopor. Mater., 267, 53 (2018).   DOI
19 D. Zhao, J. Ren, Y. Qiu, H. Li, K. Hua, X. Li, and M. Deng, "Effect of graphene oxide on the behavior or poly(amide-6-b-ethylene oxide)/graphene oxide mixed-matrix membrane in the permeation process", J. Appl. Polym. Sci., 132, 42624 (2015).
20 A. Ehsani, M. Pakizeh, "Synthesis, characterization and gas permeation study of ZIF-11/Pebax2533 mixed matrix membrans", J. Taiwan Inst. Chem. Eng., 66, 414 (2016).   DOI
21 R. Ebadi, H. Maghsoudi and A. A. Babaluo, "Fabrication and characterization of Pebax-1657 mixed matrix membrane loaded with Si-CHA zeolite for CO2 separation from CH4", J. Nat. Gas Sci. Eng., 90, 103947 (2021).   DOI
22 J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff and Y. Li, "Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation", Micropor. Mesopor. Mater., 297, 110030 (2020).   DOI
23 S. Meshkat, S. Kaliaguine and D. Rodrigue, "Mixed matrix membranes based on amine and non-amine MIL-53 (Al) in Pebax® MH-1657 for CO2 separation", Sep. Purif. Technol., 200, 177 (2018).   DOI
24 B. K. Seo, J. H. Kim, H. S. Ahn, B. J. Chang, and K. H. Lee, "The state of the art of membrane technology for separation of carbon dioxide from flue gas", KIC News, 14(3), 1 (2011).
25 Y. Wu, D. Zhao, S. Chen, J. Ren, K. Hua, H. Li and M. Deng, "The effect of structure change from polymeric membrane to gel membrane on CO2 separation performance", Sep. Purif. Technol., 261, 118243 (2021).   DOI
26 M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for CO2 separation: A review", Sep. Purif. Technol, 188, 431 (2017).   DOI
27 G. T. Offord, S. R. Armstrong, B. D. Freeman, E. Baer, A. Hiltner and D. R. Paul, "Gas transport in coextruded multilayered membranes with alternating dense and porous polymeric layers", Polymer, 55, 5, 1259 (2014).   DOI
28 D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, and B. D. Freeman, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 18, 4729 (2013).   DOI
29 V. Nafisi and M. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture", J. Membr. Sci., 459, 244 (2014).   DOI
30 L. Dong, M. Chen, J. Li, D. Shi, W. Dong, X. Li and Y. Bai, "Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes", J. Membr. Sci., 520, 801 (2016).   DOI
31 M. D. Pravin and A. Gnanamani, "Preparation, characterization and reusability efficacy of aminefunctionalized graphene oxide-polyphenol oxidase complex for removal of phenol from aqueous phase", RSC Adv., 8, 67, 38416 (2018).   DOI
32 J. P. Kim, E. Choi, J. Kang, S. E. Choi, Y. Choi, O. Kwon, and D. W. Kim, "Ultrafast H2-selective nanoporous multilayer graphene membrane prepared by confined thermal annealing", Chem. Commun., 57, 8730 (2021).   DOI
33 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
34 J. Shen, "Size effects of graphene oxide on mixed matrix membranes for CO2 separation", AIChE J., 62, 2843 (2016).   DOI