Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.450

Propylene/Propane Separation Through Polyimides Containing Bulky Ethyl Substituents  

Yoo, Seung Yeon (Hanyang University, Department of Energy Engineering)
Park, Ho Bum (Hanyang University, Department of Energy Engineering)
Publication Information
Membrane Journal / v.30, no.6, 2020 , pp. 450-459 More about this Journal
Abstract
Membrane-based separations have the potential to reduce energy consumption and environmental impact associated with conventional processes. However, many researches have been done to develop new membrane materials with greater selectivity and permeability. Here, we report highly selective membranes by introducing bulky ethyl substituents into the polyimide. The ethyl group in the ortho position to the imide nitrogen interferes the chain packing and increases chain stiffness and the distance between the polymer chains. The polyimide membranes were synthesized from various aromatic dianhydrides and 4,4'-methylenebis(2,6-diethylaniline) (MDEA). The synthesized membranes with increased gas diffusion length due to bulky substituents showed improved propylene/propane (C3H6/C3H8) selectivity. Single gas permeation showed high C3H6/C3H8 selectivity of 14.5, and C3H6 permeability of 7.0 barrer was found in MDEA-polyimide. Mixed-gas permeation results also demonstrate that MDEA-polyimide can achieve high selectivity in mixed-gas environment. Furthermore, this approach could significantly increase the feasibility of economic propylene separation compared to conventional polymer materials.
Keywords
polyimides; gas separation; propylene/propane;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 C. Y. Soo, H. J. Jo, Y. M. Lee, J. R. Quay, and M. K. Murphy, "Effect of the chemical structure of various diamines on the gas separation of thermally rearranged poly(benzoxazole-co-imide) (TR-PBO-co-I) membranes", J. Membr. Sci., 444, 365 (2013).   DOI
2 H. Sanaeepur, A. E. Amooghin, S. Bandehali, A. Moghadassi, T. Matsuura, and B. Van der Bruggen, "Polyimides in membrane gas separation: Monomer's molecular design and structural engineering", Prog. Polym. Sci., 91, 80 (2019).   DOI
3 M. Barikani, N. Fazeli, and M. Barikani, "Study on thermal properties of polyurethane-urea elastomers prepared with different dianiline chain extenders", J. Polym. Eng., 33, 87 (2013).   DOI
4 T. Voelker, H. Althaus, and A. Schmidt, "4,4'-methylene-bis-(3-chloro-2,6-diethylaniline)-m-cdea - A new chain-extending agent for cast PU-elastomers", J. Elastomers Plast., 20, 36 (1988).   DOI
5 L. Meynie, F. Fenouillot, and J. P. Pascault, "Influence of the gel on the morphology of a thermoset polymerized into a thermoplastic matrix, under shear", Polymer, 45, 5101 (2004).   DOI
6 J. Y. Park and D. R. Paul, "Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method", J. Membr. Sci., 125, 23 (1997).   DOI
7 A. Bondi, "Van der waals volumes and radii", J. Phys. Chem., 68, 441 (1964).   DOI
8 Y. Zhuang, J. G. Seong, Y. S. Do, H. J. Jo, Z. Cui, J. Lee, Y. M. Lee, and M. D. Guiver, "Intrinsically microporous soluble polyimides incorporating trö ger's base for membrane gas separation", Macromolecules, 47, 3254 (2014).   DOI
9 J. G. Wijmans and R. W. Baker, "The solution-diffusion model: A review", J. Membr. Sci., 107, 1 (1995).   DOI
10 X. Ma, S. Williams, X. Wei, J. Kniep, and Y. Lin, "Propylene/propane mixture separation characteristics and stability of carbon molecular sieve membranes", Ind. Eng. Chem. Res., 54, 9824 (2015).   DOI
11 M. Das and W. J. Koros, "Performance of 6FDA-6FpDA polyimide for propylene/propane separations", J. Membr. Sci., 365, 399 (2010).   DOI
12 C. Staudt-Bickel and W. J. Koros, "Olefin/paraffin gas separations with 6FDA-based polyimide membranes", J. Membr. Sci., 170, 205 (2000).   DOI
13 R. L. Burns and W. J. Koros, "Defining the challenges for C3H6/C3H8 separation using polymeric membranes", J. Membr. Sci., 211, 299 (2003).   DOI
14 C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012).   DOI
15 R. Swaidan, B. Ghanem, E. Litwiller, and I. Pinnau, "Effects of hydroxyl-functionalization and sub-tg thermal annealing on high pressure pure-and mixed-gas CO2/CH4 separation by polyimide membranes based on 6fda and triptycene-containing dianhydrides", J. Membr. Sci., 475, 571 (2015).   DOI
16 K. Tanaka, A. Taguchi, J. Hao, H. Kita, and K. Okamoto, "Permeation and separation properties of polyimide membranes to olefins and paraffins", J. Membr. Sci., 121, 197 (1996).   DOI
17 R. J. Swaidan, X. Ma, E. Litwiller, and I. Pinnau, "Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane", J. Membr. Sci., 495, 235 (2015).   DOI
18 F. Moghadam, T. H. Lee, I. Park, and H. B. Park, "Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/ propane selectivity", J. Membr. Sci., 603, 118019 (2020).   DOI
19 M. L. Zhang, L. M. Deng, D. X. Xiang, B. Cao, S. S. Hosseini, and P. Li, "Approaches to suppress CO2-induced plasticization of polyimide membranes in gas separation applications", Processes, 7, 51 (2019).   DOI
20 M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities", Macromolecules, 50, 7809 (2017).   DOI
21 R. W. Baker, "Membrane Technology and Applications", John Wiley & Sons (2012).
22 H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff: The trade-off between membrane permeability and selectivity", Science, 356 (2017).
23 W. J. Koros and G. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1 (1993).   DOI
24 K. Xie, Q. Fu, G. G. Qiao, and P. A. Webley, "Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture", J. Membr. Sci., 572, 38 (2019).   DOI
25 K. Vanherck, G. Koeckelberghs, and I. F. J. Vankelecom, "Crosslinking polyimides for membrane applications: A review", Prog. Polym. Sci., 38, 874 (2013).   DOI
26 W. Sotoyama, S. Tatsuura, and T. Yoshimura, "Electro-optic side-chain polyimide system with large optical nonlinearity and high thermal stability", Appl. Phys. Lett., 64, 2197 (1994).   DOI
27 K. Tanaka, H. Kita, M. Okano, and K.-I. Okamoto, "Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides", Polymer, 33, 585 (1992).   DOI
28 M. Hellums, W. Koros, G. Husk, and D. Paul, "Fluorinated polycarbonates for gas separation applications", J. Membr. Sci., 46, 93 (1989).   DOI
29 R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002).   DOI
30 T. L. Grubb, V. L. Ulery, T. J. Smith, G. L. Tullos, H. Yagci, L. J. Mathias, and M. Langsam, "Highly soluble polyimides from sterically hindered diamines", Polymer, 40, 4279 (1999).   DOI
31 L. Jung Moo, K. Deuk Ju, J. Moon Ki, L. Myung Gun, P. Chi Hoon, and N. Sang Yong, "Synthesis of highly selective polyimide material and comparison of gas permeability by molecular dynamics study", Membr. J., 25, 162 (2015).   DOI
32 L. Y. Wang, P. L. Chang, and C. L. Cheng, "Structural effects of pendant groups on thermal and electrical properties of polyimides", J. Appl. Polym. Sci., 100, 4672 (2006).   DOI
33 Y. Zhuang, J. G. Seong, Y. S. Do, W. H. Lee, M. J. Lee, Z. Cui, A. E. Lozano, M. D. Guiver, and Y. M. Lee, "Soluble, microporous, troger's base copolyimides with tunable membrane performance for gas separation", ChemComm., 52, 3817 (2016).
34 S. So Ra, H. Sang Hoon, and K. Jeong-Hoon, "Synthesis and characterization of soluble co-polyimides for biogas purification", Membr. J., 25, 231 (2015).   DOI
35 C. Zhang, P. Li, and B. Cao, "Effects of the side groups of the spirobichroman-based diamines on the chain packing and gas separation properties of the polyimides", J. Membr. Sci., 530, 176 (2017).   DOI
36 C. Y. Park, E. H. Kim, J. H. Kim, Y. M. Lee, and J. H. Kim, "Novel semi-alicyclic polyimide membranes: Synthesis, characterization, and gas separation properties", Polymer, 151, 325 (2018).   DOI
37 E. H. Kim, C. Y. Park, and J. H. Kim, "Gas transport properties of soluble polyimides containing alicyclic dianhydride", Membr. J., 24, 100 (2014).   DOI
38 K. Tanaka, M. Okano, H. Toshino, H. Kita, and K. I. Okamoto, "Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl-substituted phenylenediamines", J. Polym. Sci. B Polym. Phys., 30, 907 (1992).   DOI
39 A. Hayek, G. O. Yahaya, A. Alsamah, A. A. Alghannam, S. A. Jutaily, and I. Mokhtari, "Pure - and sour mixed-gas transport properties of 4,4'-methylenebis(2,6-diethylaniline)-based copolyimide membranes", Polymer, 166, 184 (2019).   DOI