Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.4.252

Cross-Linked PGMA-co-PMMA/DAAB Membranes for Propylene/Nitrogen Separation  

Kim, Na Un (Department of Chemical and Biomolecular Engineering, Yonsei University)
Park, Byeong Ju (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.30, no.4, 2020 , pp. 252-259 More about this Journal
Abstract
Olefins are industrially important materials used for the synthesis of various petrochemicals. During the polymerization process, unreacted olefin monomers are discharged together with a large amount of nitrogen. For economic benefits, these olefin gases should be efficiently separated from nitrogen. In this study, a poly(glycidyl methacrylate-co-methyl methacrylate) (PGM) comb-like copolymer was synthesized and 4,4'-diaminoazobenzene (DAAB) was introduced to the copolymer to prepare a cross-linked membrane for C3H6/N2 separation. PGM and DAAB were readily reacted at room temperature through an epoxide-amine reaction without additional thermal treatment. PGM-based membrane, which is a glassy polymer, showed a faster permeation of N2 compared to C3H6. The pristine PGM membrane exhibited the N2 permeability of 0.12 barrer and the high N2/C3H6 selectivity of 32.4. As DAAB was introduced as a cross-linker, the thermal stability of the membrane was significantly improved, which was confirmed by TGA result. The N2/C3H6 selectivity was decreased at 1 wt% of DAAB content, but the N2 permeability increased by approximately 4.7 times. We analyzed N2/C3H6 gas separation properties through a glassy polymer-based membrane, which has not been widely studied. Also, we proposed that thermal stability of the membrane can be greatly improved by the cross-linking method.
Keywords
graft copolymer; cross-linked polymer; membrane; propylene/nitrogen separation; glassy polymer;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S.-J. Kim, P. S. Lee, J.-S. Chang, S.-E. Nam, and Y.-I. Park, "Preparation of carbon molecular sieve membranes on low-cost alumina hollow fibers for use in $C_3H_6/C_3H_8$ separation", Sep. Purif. Technol., 194, 443 (2018).   DOI
2 J. H. Shin, H. J. Yu, J. Park, A. S. Lee, S. S. Hwang, S.-J. Kim, S. Park, K. Y. Cho, W. Won, and J. S. Lee, "Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for $C_3H_6/C_3H_8$ separation", J. Membr. Sci., 598, 117660 (2020).   DOI
3 M. Sakai, Y. Sasaki, T. Tomono, M. Seshimo, and M. Matsukata, "Olefin selective Ag-exchanged X-type zeolite membrane for propylene/propane and ethylene/ethane separation", ACS Appl. Mater. Interfaces, 11, 4145 (2019).   DOI
4 L. Yu, M. Grahn, P. Ye, and J. Hedlund, "Ultra-thin MFI membranes for olefin/nitrogen separation", J. Membr. Sci., 524, 428 (2017).   DOI
5 H. T. Kwon and H.-K. Jeong, "In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation", J. Am. Chem. Soc., 135, 10763 (2013).   DOI
6 S. A. Stern, V. M. Shah, and B. J. Hardy, "Structure-permeability relationships in silicone polymers", J. Polym. Sci., Part B: Polym. Phys., 25, 1263 (1987).   DOI
7 A. Ghadimi, M. Sadrzadeh, K. Shahidi, and T. Mohammadi, "Ternary gas permeation through a synthesized PDMS membrane: Experimental and modeling", J. Membr. Sci., 344, 225 (2009).   DOI
8 L. Deng, Y. Xue, J. Yan, C. H. Lau, B. Cao, and P. Li, "Oxidative crosslinking of copolyimides at sub-$T_g$ temperatures to enhance resistance against $CO_2$-induced plasticization", J. Membr. Sci., 583, 40 (2019).   DOI
9 V. D. Deepak, J. Rajan, and S. K. Asha, "Hydrogen bonding and rate enhancement in the photoinduced polymerization of telechelic urethane methacrylates based on a cycloaliphatic system: Tricyclodecane dimethanol", J. Polym. Sci., Part A: Polym. Chem., 44, 4384 (2006).   DOI
10 H. Molavi, A. Shojaei, and S. A. Mousavi, "Improving mixed-matrix membrane performance via PMMA grafting from functionalized $NH_2$-UiO-66", J. Mater. Chem. A, 6, 2775 (2018).   DOI
11 N. U. Kim, B. J. Park, Y. Choi, K. B. Lee, and J. H. Kim, "High-performance self-cross-linked PGPPOEM comb copolymer membranes for $CO_2$ capture", Macromolecules, 50, 8938 (2017).   DOI
12 A. Georgiev, D. Dimov, E. Spassova, J. Assa, and G. Danev, "Investigation of solid state imidization reactions of the vapour deposited azo-polyimide thin films by FTIR spectroscopy", J. Mol. Struct., 1074, 100 (2014).   DOI
13 P. Ottiger, C. Pfaffen, R. Leist, S. Leutwyler, R. A. Bachorz, and W. Klopper, "Strong N-H...${\pi}$ hydrogen bonding in amide-benzene interactions", J. Phys. Chem. B, 113, 2937 (2009).   DOI
14 Z. Li, J. Jiang, G. Lei, and D. Gao, "Gel polymer electrolyte prepared by in situ polymerization of MMA monomers in room temperature ionic liquid", Polym. Adv. Technol., 17, 604 (2006).   DOI
15 Y. Lv, J. Tian, and H. Jiang, "Three-parameter correlation for the temperature dependent thermal conductivity of saturated liquids", Fluid Phase Equilib., 514, 112563 (2020).   DOI
16 Y. Liu, B. Zhang, D. Liu, P. Sheng, and Z. Lai, "Fabrication and molecular transport studies of highly c-Oriented AFI membranes", J. Membr. Sci., 528, 46 (2017).   DOI
17 W. Yave, A. Car, S. S. Funari, S. P. Nunes, and K.-V. Peinemann, "$CO_2$-philic polymer membrane with extremely high separation performance", Macromolecules, 43, 326 (2010).   DOI
18 N. Kawachale, A. Kumar, and D. M. Kirpalani, "Numerical investigation of hydrocarbon enrichment of process gas mixtures by permeation through polymeric membranes", Chem. Eng. Technol., 31, 58 (2008).   DOI
19 L. M. Robeson, Z. P. Smith, B. D. Freeman, and D. R. Paul, "Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes", J. Membr. Sci., 453, 71 (2014).   DOI
20 N. U. Kim, B. J. Park, M. S. Park, J. T. Park, and J. H. Kim, "Semi-interpenetrating polymer network membranes based on a self-crosslinkable comb copolymer for $CO_2$ capture", Chem. Eng. J., 360, 1468 (2019).   DOI
21 S.-Y. Kim, T.-U. Yoon, J. H. Kang, A.-R. Kim, T.-H. Kim, S.-I. Kim, W. Park, K. C. Kim, and Y.-S. Bae, "Observation of olefin/paraffin selectivity in Azo compound and its application into a metal-organic framework", ACS Appl. Mater. Interfaces, 10, 27521 (2018).   DOI
22 C. H. Park, J. H. Lee, M. S. Park, and J. H. Kim, "Propylene/nitrogen separation membranes based on amphiphilic copolymer grafted from poly(1-trimethylsilyl-1-propyne)", Membr. J., 29, 88 (2019).   DOI
23 M. Kim and S. W. Kang, "Fabrication of poly(ethylene oxide)/Ag nanoparticles p-benzoquinone composite membrane using $AgNO_3$ precursor for olefin/paraffin separation", Membr. J., 28, 260 (2018).   DOI
24 K. Eum, C. Ma, A. Rownaghi, C. W. Jones, and S. Nair, "ZIF-8 membranes via interfacial microfluidic processing in polymeric hollow fibers: Efficient propylene separation at elevated pressures", ACS Appl. Mater. Interfaces, 8, 25337 (2016).   DOI
25 I. G. Giannakopoulos and V. Nikolakis, "Recovery of hydrocarbons from mixtures containing $C_3H_6$, $C_3H_8$ and $N_2$ using NaX membranes", J. Membr. Sci., 305, 332 (2007).   DOI
26 J. W. Oh, K. Y. Cho, M.-Y. Kan, H. J. Yu, D.-Y. Kang, and J. S. Lee, "High-flux mixed matrix membranes containing bimetallic zeolitic imidazole framework-8 for $C_3H_6/C_3H_8$ separation", J. Membr. Sci., 596, 117735 (2020).   DOI
27 J. Kim and M. R. Othman, "Research trend on ZIF-8 membranes for propylene separation", Membr. J., 29, 67 (2019).   DOI
28 W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation Won Seok", Membr. J., 25, 373 (2015).   DOI
29 M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for $CO_2$ separation: A review", Sep. Purif. Technol., 188, 431 (2017).   DOI
30 T. C. Merkel, V. Bondar, K. Nagai, and B. D. Freeman, "Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne)", J. Polym. Sci., Part B: Polym. Phys., 38, 273 (2000).   DOI
31 Y. Shi, C. M. Burns, and X. Feng, "Poly(dimethyl siloxane) thin film composite membranes for propylene separation from nitrogen", J. Membr. Sci., 282, 115 (2006).   DOI
32 L. Liu, A. Chakma, and X. Feng, "Propylene separation from nitrogen by poly(ether block amide) composite membranes", J. Membr. Sci., 279, 645 (2006).   DOI