Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.66

Effect of Twisted Hollow Fiber Membranes in a Module: Computational Fluid Dynamics Simulations on the Pressure and Concentration Profile of the Module in the forward Osmosis  

Kim, Suhun (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
Lee, Chulmin (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
Kim, In S. (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
Publication Information
Membrane Journal / v.30, no.1, 2020 , pp. 66-77 More about this Journal
Abstract
The current study focused on the effect of twisting hollow fibers (HFs) in a module during forward osmosis operation mode. Computational fluid dynamics simulation was employed for a straight HF module and twisted modules with five different angles to predict the mass transfer and observe the draw solution profile in terms of concentration and pressure. The simulation results showed that when the membranes were twisted, the concentration was distributed more evenly and the pressure at the module outlet increased gradually as the twisting angle increased. As pressure at the outlet increased, the fluid velocity inside the membrane decreased and the residence time of fluid increased, thereby facilitating mass exchange across the membrane. This is evidenced by a doubling of the ratio of water flux through the membrane in module flux when the HFs were twisted.
Keywords
twisted hollow fiber; hollow fiber module; forward osmosis; computational fluid dynamics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Zhao, L. Zou, C. Y. Tang, and D. Mulcahy, "Recent developments in forward osmosis: Opportunities and challenges", J. Membr. Sci., 396, 1 (2012).   DOI
2 D. Ma, S. B. Peh, G. Han, and S. B. Chen, "Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection", ACS Appl. Mater. Interfaces., 9, 7523 (2017).   DOI
3 S. Kook, C. D. Swetha, J. Lee, C. Lee, T. Fane, and I. S. Kim, "Forward osmosis membranes under null-pressure condition: Do hydraulic and osmotic pressures have identical nature?", Environ. Sci. Technol., 52, 3556 (2018).   DOI
4 A. J. Ansari, F. I. Hai, W. E. Price, J. E. Drewes, and L. D. Nghiem, "Forward osmosis as a platform for resource recovery from municipal wastewater - A critical assessment of the literature", J. Memb. Sci., 529, 195 (2017).   DOI
5 M. Zhan, G. Gwak, D. Inhyuk, K. Park, and S. Hong, "Quantitative analysis of the irreversible membrane fouling of forward osmosis during wastewater reclamation: Correlation with the modified fouling index", J. Memb. Sci., 597, 117757 (2020).   DOI
6 S. S. Manickam and J. R. McCutcheon, "Understanding mass transfer through asymmetric membranes during forward osmosis: A historical perspective and critical review on measuring structural parameter with semi-empirical models and characterization approaches", Desalination, 421, 110 (2017).   DOI
7 E. Yang, C. M. Kim, J. Song, H. Ki, M. H. Ham, and I. S. Kim, "Enhanced desalination performance of forward osmosis membranes based on reduced graphene oxide laminates coated with hydrophilic polydopamine", Carbon, 117, 293 (2017).   DOI
8 W. Xu, Q. Chen, and Q. Ge, "Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes", Desalination, 419, 101 (2017).   DOI
9 D. M. Warsinger, S. Chakraborty, E. W. Tow, M. H. Plumlee, C. Bellona, S. Loutatidou, L. Karimi, A. M. Mikelonis, A. Achilli, A. Ghassemi, L. P. Padhye, S. A. Snyder, S. Curcio, C. D. Vecitis, H. A. Arafat, and J. H. Lienhard, "A review of polymeric membranes and processes for potable water reuse", Prog. Polym. Sci., 81, 209 (2018).   DOI
10 D. Xiao, W. Li, S. Chou, R. Wang, and C. Y. Tang, "A modeling investigation on optimizing the design of forward osmosis hollow fiber modules", J. Memb. Sci., 392-393, 76 (2012).   DOI
11 D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech, "Forward osmosis: Where are we now?", Desalination, 356, 271 (2015).   DOI
12 C. M. Werner, B. E. Logan, P. E. Saikaly, and G. L. Amy, "Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell", J. Membr. Sci., 428, 116 (2013).   DOI
13 R. V. Linares, Z. Li, S. Sarp, S. S. Bucs, G. Amy, and J. S. Vrouwenvelder, "Forward osmosis niches in seawater desalination and wastewater reuse", Water Res., 66, 122 (2014).   DOI
14 J. Jang, I. Park, S. S. Chee, J. H. Song, Y. Kang, C. Lee, W. Lee, M. H. Ham, and I. S. Kim, "Graphene oxide nanocomposite membrane cooperatively cross-linked by monomer and polymer overcoming the trade-off between flux and rejection in forward osmosis", J. Memb. Sci., DOI:10.1016/j. memsci.2019.117684 (In press).
15 S. Lin, "Mass transfer in forward osmosis with hollow fiber membranes", J. Memb. Sci., 514, 176 (2016).   DOI
16 https://www.forwardosmosistech.com/the-4-different-designs-of-forward-osmosis-fo-membrane-modules/, March 30 (2014).
17 https://aquaporin.com/fo/, October 17 (2019).
18 https://www.forwardosmosistech.com/hollow-fiber-forward-osmosis-membrane-modules/, March 28 (2014).
19 P. Sousa, A. Soares, E. Monteiro, and A. Rouboa, "A CFD study of the hydrodynamics in a desalination membrane filled with spacers", Desalination, 349, 22 (2014).   DOI
20 M. Brannock, Y. Wang, and G. Leslie, "Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation", Water Res., 44, 3181 (2010).   DOI
21 A. Cahyadi, S. Yang, and J. W. Chew, "CFD study on the hydrodynamics of fluidized granular activated carbon in AnFMBR applications", Sep. Purif. Technol., 178, 75 (2017).   DOI
22 C. Lee, S. Kook, C. Choi, T. T. Nguyen, and I. S. Kim, "Effects of membrane envelope geometry on hydrodynamics inside draw channel of forward osmosis spiral wound membrane element", Desalin. Water Treat., 112, 282 (2018).   DOI
23 C. Choi, C. Lee, N.-S. Park, and I. S. Kim, "Numerical study of fluid behavior on protruding shapes within the inlet part of pressurized membrane module using computational fluid dynamics", Environ. Eng. Res., DOI:10.4491/eer.2018.423 (In Press).
24 L. Zhuang, H. Guo, P. Wang, and G. Dai, "Study on the flux distribution in a dead-end outside-in hollow fiber membrane module", J. Membr. Sci., 495, 372 (2015).   DOI
25 F. Parvaza, S. H. Hosseinib, K. Elsayedc, and G. Ahmadid, "Numerical investigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators", Sep. Purif. Technol., 201, 223 (2018).   DOI
26 F. Zhou, G. Sun, Y. Zhang, H. Ci, and Q. Wei, "Experimental and CFD study on the effects of surface roughness on cyclone performance", Sep. Purif. Technol., 193, 175 (2018).   DOI
27 M. Shibuya, M. Yasukawa, S. Goda, H. Sakurai, T. Takahashi, M. Higa, and H. Matsuyama, "Experimental and theoretical study of a forward osmosis hollow fiber membrane module with a cross-wound configuration", J. Memb. Sci., 504, 10 (2016).   DOI
28 S. P. Motevalian, A. Borhan, H. Zhou, and A. Zydney, "Twisted hollow fiber membranes for enhanced mass transfer", J. Memb. Sci., 514, 586 (2016).   DOI
29 W. M. Haynes, "CRC Handbook of Chemistry and Physics", 93st ed., pp. 6-8, 6-231, CRC Press, Boca Raton, FL (2012).
30 G. Pereira, R. Moreira, M. J. Vázquez, and F. Chenlo, "Kinematic viscosity prediction for aqueous solutions with various solutes", Chem. Eng. J., 81, 35 (2001).   DOI
31 L. Zhuang, H. Guo, G. Dai, and Z.-L. Xu, "Effect of the inlet manifold on the performance of a hollow fiber membrane module-A CFD study", J. Memb. Sci., 526, 73 (2017).   DOI
32 https://aquaporin.com/wp-content/uploads/2019/08/Aquaporin-HFFO2-Datasheet.pdf, August 1 (2019).
33 https://aquaporin.com/wp-content/uploads/2019/11/Aquaporin-HFFO2-Standard-Test-Setup.pdf, November 1 (2019).
34 M. Usta, M. Morabito, A. Anqi, M. Alrehili, A. Hakim, and A. Oztekin, "Twisted hollow fiber membrane modules for reverse osmosis-driven desalination", Desalination, 441, 21 (2018).   DOI