Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.226

1-Butyl-3-methylimidazolium tetrafluoroborate/Al2O3 Composite Membrane for CO2 Separation  

Yoon, Ki Wan (Department of Chemistry, Sangmyung University)
Kang, Sang Wook (Department of Chemistry, Sangmyung University)
Publication Information
Membrane Journal / v.27, no.3, 2017 , pp. 226-231 More about this Journal
Abstract
1-Butyl-3-methylimidazolium tetrafluoroborate ($BMIM^+BF_4{^-}$) and $Al_2O_3$ as metal oxide for preparation of composite membrane were utilized for the $CO_2$ separation. When 13 nm $Al_2O_3$ nanoparticles were incorporated into ionic liquid $BMIM^+BF_4{^-}$, the separation performance for composite membrane showed the selectivity ($CO_2/N_2$) of 30.5 and $CO_2$ permeance of 45.7 GPU. The enhanced separation performance was attributable to the increased $CO_2$ solubility by both oxide layer of $Al_2O_3$ and abundant free ions of ionic liquid. In particular, $Al_2O_3$ nanoparticles acted as obstacles to nitrogen gas, resulting in the decrease of permeability of nitrogen gas. As a result, the carbon dioxide separation performance could be enhanced.
Keywords
$CO_2$; membrane; ionic liquid; solubility; $Al_2O_3$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. R. Raupach, G. Marland, P. Ciais, C. Le Quere, J. G. Canadell, G. Klepper, and C. B. Field, "Global and regional drivers of accelerating $CO_2$ emissions", Proc. Natl. Acad. Sci. U. S. A., 104, 10288 (2007).   DOI
2 J.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, and H.-C. Zhou, "Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks", Coord. Chem. Rev., 255, 1791 (2011).   DOI
3 M. L. Parry, "Climate Change 2007: Impacts, Adaptation and Vulnerability: Working Group I Contribution to the Fourth Assessment Report of the IPCC", Cambridge University Press (2007).
4 D. Keith, "Why capture $CO_2$ from the atmosphere", Science, 325, 1654 (2009).   DOI
5 M. S. A. Rahaman, L. H. Cheng, X. H. Xu, L. Zhang, and H. L. Chen, "A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes", Renew. Sustain. Ener. Rev., 15, 4002 (2011).   DOI
6 H. Chen, G. Obuskovic, S. Majumdar, and K. Sirkar, "Immobilized glycerol-based liquid membranes in hollow fibers for selective $CO_2$ separation from $CO_2$-$N_2$ mixtures", J. Membr. Sci., 183, 75 (2001).   DOI
7 D. M. D'Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: Prospects for new materials", Angew. Chem. Int. Ed., 49, 6058 (2010).   DOI
8 Q. Wang, J. Luo, Z. Zhong, and A. Borgna, "$CO_2$ capture by solid adsorbents and their applications: current status and new trends", Energy Environ. Sci., 4, 42 (2011).   DOI
9 E. S. Rubin, "$CO_2$ capture and transport", Elements, 4, 311 (2008).   DOI
10 O. Karvan, J. R. Johnson, P. Williams, and W. Koros, "A pilot‐scale system for carbon molecular sieve hollow fiber membrane manufacturing", Chem. Eng. Technol., 36, 53 (2013).   DOI
11 A. S. Kovvali and K. Sirkar, "Dendrimer liquid membranes: $CO_2$ separation from gas mixtures", Ind. Eng. Chem. Res., 40, 2502 (2001).   DOI
12 H. Ohno, M. Yoshizawa, and T. Mizumo, "in Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, John Wiley & Sons, Inc", New Jersey (2005).
13 M. J. Earle, J. M. S. S. Esperanca, M. A. Gilea, J. N. Canongia Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon, and J. A. Widegren, "The distillation and volatility of ionic liquids", Nature, 439, 831 (2006).   DOI
14 J. L. Anderson, R. Ding, A. Ellern, and D. W. Armstrong, "Structure and properties of high stability geminal dicationic ionic liquids", J. Am. Chem. Soc., 127, 593 (2005).   DOI
15 M. Smiglak, W. M. Reichert, J. D. Holbrey, J. S. Wilkes, L. Sun, J. S. Thrasher, K. Kirichenko, S. Singh, A. R. Katritzky, and R. D. Rogers, "Combustible ionic liquids by design: is laboratory safety another ionic liquid myth", Chem. Commun., 24, 2554 (2006).
16 C. Wang, X. Luo, H. Luo, D.-e. Jiang, H. Li, and S. Dai, "Tuning the Basicity of Ionic Liquids for Equimolar $CO_2$ Capture", Angew. Chem., Int. Ed., 50, 4918 (2011).   DOI
17 C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, and E. J. Maginn, "Why is $CO_2$ so soluble in imidazolium-based ionic liquids", J. Am. Chem. Soc., 126, 5300 (2004).   DOI
18 J. L. Anthony, J. L. Anderson, E. J. Maginn, and J. F. Brennecke, "Anion Effects on Gas Solubility in Ionic Liquids", J. Phys. Chem. B, 109, 6366 (2005).   DOI
19 J. L. Anderson, J. K. Dixon, and J. F. Brennecke, "Solubility of $CO_2$, $CH_4$, $C_2H_6$, $C_2H_4$ $O_2$, and $N_2$ in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl) imide: Comparison to other ionic liquids", Acc. Chem. Res., 40, 1208 (2007).   DOI
20 M. J. Muldoon, S. N. V. K. Aki, J. L. Anderson, J. K. Dixon, and J. F. Brennecke, "Improving carbon dioxide solubility in ionic liquids", J. Phys. Chem. B, 111, 9001 (2007).   DOI
21 G. Wang, W. Hou, F. Xiao, J. Geng, Y. Wu, and Z. Zhang, "Lowviscosity triethylbutylammonium acetate as a task-specific ionic liquid for reversible $CO_2$ absorption", J. Chem. Eng. Data., 56, 1125 (2011).   DOI
22 S. D. Yoo, J. Won, S. W. Kang, Y. S. Kang, and S, Nagase, "$CO_2$ separation membranes using ionic liquids in a Nafion matrix", J. Membr. Sci., 363, 72 (2010).   DOI
23 K. Huang, X. M. Zhang, Y. X, Li, Y. T. Wu, and X. B. Hu, "Facilitated separation of $CO_2$ and $SO_2$ through supported liquid membranes using carboxylate- based ionic liquids", J. Membr. Sci., 471, 227 (2014).   DOI
24 D. H. Ji, Y. S. Kang, and S. W. Kang, "Accelerated $CO_2$ transport on surface of AgO nanoparticles in ionic liquid $BMIMBF_4$", Sci. Rep., 5, 16362 (2015).   DOI
25 K. W. Yoon, H. Kim, Y. S. Kang, and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/ zinc oxide composite membrane for high $CO_2$ separation performance", Chem. Eng. J., 320, 50 (2017).   DOI