Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.432

Recent Developments in Ion-Exchange Nanocomposite Membranes for Energy Applications  

Hwang, Doo Sung (Department of Chemical Engineering, University of Illinois at Chicago)
Chung, Tiffany (Department of Chemical Engineering, University of Illinois at Chicago)
Wang, Tongshuai (Department of Chemical Engineering, University of Illinois at Chicago)
Kim, Sangil (Department of Chemical Engineering, University of Illinois at Chicago)
Publication Information
Membrane Journal / v.26, no.6, 2016 , pp. 432-448 More about this Journal
Abstract
In the last decade, various types of energy harvesting and conversion systems based on ion exchange membranes (IEMs) have been developed for eco-friendly power generation and energy-grid systems. In these membrane-based energy systems, high ion selectivity and conductivity properties of IEMs are critical parameters to improve efficiency of the systems such as proton exchange membrane fuel cells, anion exchange membrane fuel cells, redox flow batteries, water electrodialysis for hydrogen production, and reverse electrodialysis. This article suggests variable approaches to overcome trade-off limitation of polymeric membrane ion transport properties by reviewing various types of composite ion-exchange membranes including novel inorganic-organic nanocomposite membrane, surface modified membranes, cross-linked and pore-filled membranes.
Keywords
Ion exchange membranes; Polymer composite membranes; Ion selective transport; Energy storage; Energy conversion;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 E. D. Williams, "ARPA-E: First seven years, A sampling of project outcomes", the Advanced Research Project Agency for Energy (ARPA-E), the United States (2016).
2 D. Papageorgopoulos, "2016 Annual Merit Review Proceedings Hydrogen and Fuel Cells Program Plenary", The Department of Energy (DOE), The United State (2016).
3 C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium- temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011).   DOI
4 W. H. Lee, K. H. Lee, D. W. Shin, D. S. Hwang, N. R. Kang, D. H. Cho, J. H. Kim, and Y. M. Lee, "Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells", Power Sources, 282, 211 (2015).   DOI
5 B. Han, J. Pan, S. Yang, M. Zhou, J. Li, A. Sotto Díaz, B. Van der Bruggen, C. Gao, and J. Shen, "Novel composite anion exchange membranes based on quaternized polyepichlorohydrin for electromembrane application", Ind. Eng. Chem. Res., 55, 7171 (2016).   DOI
6 J. B. Ballengee and P. N. Pintauro, "Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats", J. Membr. Sci., 442, 187 (2013).   DOI
7 J. B. Ballengee and P. N. Pintauro, "Composite fuel cell membranes from dual-nanofiber electrospun mats", Macromolecules, 44, 7307 (2011).   DOI
8 D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016).   DOI
9 H. Jung, K. Fujii, T. Tamaki, H. Ohashi, T. Ito, and T. Yamaguchi, "Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells", J. Membr. Sci., 373, 107 (2011).   DOI
10 B. P. Tripathi and V. K. Shahi, "Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications", Prog. Polym. Sci., 36, 945 (2011).   DOI
11 P. Dllugolecki, K. Nymeijer, S. Metz, and M. Wessling, "Current status of ion exchange membranes for power generation from salinity gradients", J. Membr. Sci., 319, 214 (2008).   DOI
12 R. M. Darling, K. G. Gallagher, J. A. Kowalski, S. Ha, and F. R. Brushett, "Pathways to low- cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries", Energy Environ. Sci., 7, 3459 (2014).   DOI
13 M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development. journal of the electrochemical society", J. Electochem. Soc., 158, R55 (2011).   DOI
14 M. Watanabe, H. Uchida, and M. Emori, "Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: Experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells", J. Phys. Chem. B, 102, 3129 (1998).   DOI
15 B. E. Logan and M. Elimelech, "Membrane-based processes for sustainable power generation using water", Nature, 488, 313 (2012).   DOI
16 R. Darling, K. Gallagher, W. Xie, L. Su, and F. Brushett, "Transport property requirements for flow battery separators", J. Electrochem. Soc., 163, A5029 (2016).   DOI
17 K. A. Mauritz and R. B. Moore, "State of understanding of nafion", Chem. Rev., 104, 4535 (2004).   DOI
18 G. M. Geise, M. A. Hickner, and B. E. Logan, "Ionic resistance and permselectivity tradeoffs in anion exchange membranes", ACS Appl. Mater. Interfaces, 5, 10294 (2013).   DOI
19 Z. Qi, and A. Kaufman, "Open circuit voltage and methanol crossover in DMFCs", J. Power Sources, 110, 177 (2002).   DOI
20 X. Zhu, H. Zhang, Y. Zhang, Y. Liang, X. Wang, and B. Yi, "An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis", J. Phys. Chem. B, 110, 14240 (2006).   DOI
21 C. Bi, H. Zhang, Y. Zhang, X. Zhu, Y. Ma, H. Dai, and S. Xiao, "Fabrication and investigation of $SiO_2$ supported sulfated zirconia/Nafion(R) self-humidifying membrane for proton exchange membrane fuel cell applications", J. Power Sources, 184, 197 (2008).   DOI
22 Z. Chen, B. Holmberg, W. Li, X. Wang, W. Deng, R. Munoz, and Y. Yan, "Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell", Chem. Mater., 18, 5669 (2006).   DOI
23 S. Meenakshi, A. K. Sahu, S. D. Bhat, P. Sridhar, S. Pitchumani, and A. K. Shukla, "Mesostructured-aluminosilicate-Nafion hybrid membranes for direct methanol fuel cells", Electrochim. Acta., 89, 35 (2013).   DOI
24 U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, and J. Pastre, "Metal- organic frameworks-prospective industrial applications", J. Mater. Chem., 16, 626 (2006).   DOI
25 S. Mikhailenko, D. Desplantier-Giscard, C. Danumah, and S. Kaliaguine, "Solid electrolyte properties of sulfonic acid functionalized mesostructured porous silica", Microporous Mesoporous Mater., 52, 29 (2002).   DOI
26 Y.-H. Liu, B. Yi, Z.-G. Shao, L. Wang, D. Xing, and H. Zhang, "Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications", J. Power Sources, 163, 807 (2007).   DOI
27 C. Laberty-Robert, K. Valle, F. Pereira, and C. Sanchez, "Design and properties of functional hybrid organic-inorganic membranes for fuel cells", Chem. Soc. Rev., 40, 961 (2011).   DOI
28 A. Daniilidis, D. A. Vermaas, R. Herber, and K. Nijmeijer, "Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis", Renew. Energy, 64, 123 (2014).   DOI
29 S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrogen Energy, 35, 9349 (2010).   DOI
30 E. Bakangura, L. Wu, L. Ge, Z. Yang, and T. Xu, "Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives", Prog. Polym. Sci., 57, 103 (2016).   DOI
31 B. Bae, K. Miyatake, and M. Watanabe, "Effect of the hydrophobic component on the properties of sulfonated poly(arylene ether sulfone)s", Macromolecules, 42, 1873 (2009).   DOI
32 K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004).   DOI
33 R. Souzy and B. Ameduri, "Functional fluoropolymers for fuel cell membranes", Prog. Polym. Sci., 30, 644 (2005).   DOI
34 K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001).   DOI
35 H.-C. Chien, L.-D. Tsai, C.-P. Huang, C.-y. Kang, J.-N. Lin, and F.-C. Chang, "Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells", Int. J. Hydrogen Energy, 38, 13792 (2013).   DOI
36 J.-M. Thomassin, J. Kollar, G. Caldarella, A. Germain, R. Jerome, and C. Detrembleur, "Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications", J. Membr. Sci., 303, 252 (2007).   DOI
37 L. Wang, D. M. Xing, H. M. Zhang, H. M. Yu, Y. H. Liu, and B. L. Yi, "MWCNTs reinforced Nafion$^{(R)}$ membrane prepared by a novel solution- cast method for PEMFC", J. Power Sources, 176, 270 (2008).   DOI
38 Y.-C. Cao, C. Xu, X. Wu, X. Wang, L. Xing, and K. Scott, "A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells", J. Power Sources, 196, 8377 (2011).   DOI
39 Y. Heo, H. Im, and J. Kim, "The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells", J. Membr. Sci., 425-426, 11 (2013).   DOI
40 Z. Jiang, Y. Shi, Z.-J. Jiang, X. Tian, L. Luo, and W. Chen, "High performance of a freestanding sulfonic acid functionalized holey graphene oxide paper as a proton conducting polymer electrolyte for air-breathing direct methanol fuel cells", J. Mater. Chem. A, 2, 6494 (2014).   DOI
41 S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, "Surface modification of inorganic nanoparticles for development of organic- inorganic nanocomposites-A review", Prog. Polym. Sci., 38, 1232 (2013).   DOI
42 Y.-H. Su, Y.-L. Liu, Y.-M. Sun, J.-Y. Lai, D.-M. Wang, Y. Gao, B. Liu, and M. D. Guiver, "Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells", J. Membr. Sci., 296, 21 (2007).   DOI
43 K. H. Lee, S. Y. Lee, D. W. Shin, C. Wang, S.-H. Ahn, K.-J. Lee, M. D. Guiver, and Y. M. Lee, "Structural influence of hydrophobic diamine in sulfonated poly(sulfide sulfone imide) copolymers on medium temperature PEM fuel cell", Polymer, 55, 1317 (2014).   DOI
44 Y. S. Kim, M. A. Hickner, L. Dong, B. S. Pivovar, and J. E. McGrath, "Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability", J. Membr. Sci., 243, 317 (2004).   DOI
45 D. S. Phu, C. H. Lee, C. H. Park, S. Y. Lee, and Y. M. Lee, "Synthesis of crosslinked sulfonated poly(phenylene sulfide sulfone nitrile) for direct methanol fuel cell applications", Macromol. Rapid Commun., 30, 64 (2009).   DOI
46 Z. Bai, J. A. Shumaker, M. D. Houtz, P. A. Mirau, and T. D. Dang, "Fluorinated poly(arylenethioethersulfone) copolymers containing pendant sulfonic acid groups for proton exchange membrane materials", Polymer, 50, 1463 (2009).   DOI
47 Y. Yin, O. Yamada, Y. Suto, T. Mishima, K. Tanaka, H. Kita, and K.-i. Okamoto, "Synthesis and characterization of proton-conducting copolyimides bearing pendant sulfonic acid groups", J. Polym. Sci. Part A Polym. Chem., 43, 1545 (2005).   DOI
48 C. S. Karthikeyan, S. P. Nunes, L. A. S. A. Prado, M. L. Ponce, H. Silva, B. Ruffmann, and K. Schulte, "Polymer nanocomposite membranes for DMFC application", J. Membr. Sci., 254, 139 (2005).   DOI
49 H. Hagihara, H. Uchida, and M. Watanabe, "Preparation of highly dispersed $SiO_2$ and Pt particles in Nafion$^(R)$112 for self-humidifying electrolyte membranes in fuel cells", Electrochim. Acta, 51, 3979 (2006).   DOI
50 M.-N. Kim, Y.-W. Choi, T.-Y. Kim, M.-S. Lee, C.-S. Kim, T.-H. Yang, and K.-S. Nam, "Characterization of sulfonated ploy(aryl ether sulfone) membranes impregnated with sulfated $ZrO_2$", Membr. J., 21, 30 (2011).
51 J. Kim, J.-D. Jeon, and S.-Y. Kwak, "Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery", Electrochem. Comm., 38, 68 (2014).   DOI
52 E. Vijayakumar and D. Sangeetha, "A quaternized mesoporous silica/polysulfone composite membrane for an efficient alkaline fuel cell application", RSC Adv., 5, 42828 (2015).   DOI
53 V. Elumalai and S. Dharmalingam, "Synthesis characterization and performance evaluation of ionic liquid immobilized SBA-15/quaternised polysulfone composite membrane for alkaline fuel cell", Microporous Mesoporous Mater., 236, 260 (2016).   DOI
54 N. Qian, Z. Duan, Y. Zhu, Q. Xiang, and J. Xu, "4,4'-Diaminodiphenyl sulfone functionalized SBA-15: Toluene sensing properties and improved proton conductivity", J. Physic. Chem. C, 118, 1879 (2014).   DOI
55 K.-D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors", Angew. Chemie Int. Ed., 21, 208 (1982).
56 Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells", Prog. Polym. Sci., 34, 449 (2009).   DOI
57 N. Li and M. D. Guiver, "Ion transport by nanochannels in ion-containing aromatic copolymers", Macromolecules, 47, 2175 (2014).   DOI
58 T. J. Peckham and S. Holdcroft, "Structure-morphology- property relationships of non- perfluorinated proton-conducting membranes", Adv. Mater., 22, 4667 (2010).   DOI
59 K.-D. Kreuer and G. Portale, "A critical revision of the nano-morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications", Adv. Funct. Mater., 23, 5390 (2013).   DOI
60 J. Veerman, R. M. de Jong, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density", J. Membr. Sci., 343, 7 (2009).   DOI
61 M. Tedesco, A. Cipollina, A. Tamburini, and G. Micale, "Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines", J. Membr. Sci., 522, 226 (2017).   DOI
62 F. Fornasiero, J. B. In, S. Kim, H. G. Park, Y. Wang, C. P. Grigoropoulos, A. Noy, and O. Bakajin, "pH-Tunable ion selectivity in carbon nanotube pores", Langmuir, 26, 14848 (2010).   DOI
63 W.-F. Chen, J.-S. Wu, and P.-L. Kuo, "Poly(oxyalkylene) diamine-Functionalized Carbon Nanotube/ Perfluorosulfonated Polymer Composites: Synthesis, Water State, and Conductivity", Chem. Mater., 20, 5756 (2008).   DOI
64 E. Fontananova, D. Messana, R. A. Tufa, I. Nicotera, V. Kosma, E. Curcio, W. van Baak, E. Drioli, and G. Di Profio, "Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion", J. Power Sources, 340, 282 (2017).   DOI
65 E. Fontananova, W. Zhang, I. Nicotera, C. Simari, W. van Baak, G. Di Profio, E. Curcio, and E. Drioli, "Probing membrane and interface properties in concentrated electrolyte solutions", J. Membr. Sci., 459, 177 (2014).   DOI
66 Y. Wang, Z. Jiang, H. Li, and D. Yang, "Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC", Chem. Eng. Process.: Process Intensification., 49, 278 (2010).   DOI
67 L. Zhiting, D. Xuezhi, Q. Gang, Z. Xinggui, and Y. Weikang, "Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups", Nanotechnol., 24, 045609 (2013).   DOI
68 C. W. Jones, K. Tsuji, and M. E. Davis, "Organic-functionalized molecular sieves as shape- selective catalysts", Nature, 393, 52 (1998).   DOI
69 R. H. Tunuguntla, F. I. Allen, K. Kim, A. Belliveau, and A. Noy, "Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins", Nat. Nanotechnol., 11, 639 (2016).   DOI
70 S. H. Joo, C. Pak, E. A. Kim, Y. H. Lee, H. Chang, D. Seung, Y. S. Choi, J.-B. Park, and T. Kim, "Functionalized carbon nanotube-poly (arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance", J. Power Sources, 180, 63 (2008).   DOI
71 K. J. Lee and Y. H. Chu, "Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system", Vacuum, 107, 269 (2014).   DOI
72 Z. Mai, H. Zhang, X. Li, C. Bi, and H. Dai, "Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 196, 482 (2011).   DOI
73 P. Dai, Z.-H. Mo, R.-W. Xu, S. Zhang, X. Lin, W.-F. Lin, and Y.-X. Wu, "Development of a cross-linked quaternized poly(styrene-b-isobutyleneb- styrene)/graphene oxide composite anion exchange membrane for direct alkaline methanol fuel cell application", RSC Adv., 6, 52122 (2016).   DOI
74 Z. Luo, Y. Gong, X. Liao, Y. Pan, and H. Zhang, "Nanocomposite membranes modified by graphene-based materials for anion exchange membrane fuel cells", RSC Adv., 6, 13618 (2016).   DOI
75 B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, and Z. Yang, "Membrane development for vanadium redox flow batteries", ChemSusChem, 4, 1388 (2011).   DOI
76 D. J. Kim and S. Y. Nam, "Research trend of polymeric ion-exchange membrane for vanadium redox flow battery", Membr. J., 22, 385 (2012).
77 Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, and Y. Zhang, "Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery", J. Membr. Sci., 325, 553 (2008).   DOI
78 J. Pandey and B. R. Tankal, "Performance of the vanadium redox-flow battery (VRB) for Si-PWA/ PVA nanocomposite membrane", J. Solid State Electrochem., 20, 2259 (2016).   DOI
79 J. Li, X. Yan, Y. Zhang, B. Zhao, and G. He, "Enhanced hydroxide conductivity of imidazolium functionalized polysulfone anion exchange membrane by doping imidazolium surface-functionalized nanocomposites", RSC Adv., 6, 58380 (2016).   DOI
80 L. Liu, C. Tong, Y. He, Y. Zhao, and C. Lu, "Enhanced properties of quaternized graphenes reinforced polysulfone based composite anion exchange membranes for alkaline fuel cell", J. Membr. Sci., 487, 99 (2015).   DOI
81 W. Dai, Y. Shen, Z. Li, L. Yu, J. Xi, and X. Qiu, "SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery", J. Mater. Chem. A, 2, 12423 (2014).   DOI
82 X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, and L. Chen, "Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery", J. Power Sources, 189, 1240 (2009).   DOI
83 Y. T. Hong, C. H. Lee, H. S. Park, K. A. Min, H. J. Kim, S. Y. Nam, and Y. M. Lee, "Improvement of electrochemical performances of sulfonated poly(arylene ether sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole)", J. Power Sources, 175, 724 (2008).   DOI
84 S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li, J. Liu, Z. Yang, and M. A. Hickner, "Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries", Electrochem. Commun., 12, 1650 (2010).   DOI
85 B. Kosmala and J. Schauer, "Ion-exchange membranes prepared by blending sulfonated poly(2,6- dimethyl-1,4-phenylene oxide) with polybenzimidazole", J. Appl. Polym. Sci., 85, 1118 (2002).   DOI
86 C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochim. Acta., 46, 2401 (2001).   DOI
87 T. Yamaguchi, F. Miyata, and S. Nakao, "Polymer electrolyte membranes with a pore- filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003).   DOI
88 C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480 (2016).   DOI
89 S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, and H. Matsuyama, "Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition", J. Membr. Sci., 431, 113 (2013).   DOI
90 M.-K. Park, S. Deng, and R. C. Advincula, "pH-Sensitive bipolar ion-permselective ultrathin films", J. Am. Chem. Soc., 126, 13723 (2004).   DOI
91 S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, "Proton conducting membranes based on crosslinked sulfonated poly(ether ether ketone) (SPEEK)", J. Membr. Sci., 233, 93 (2004).   DOI
92 S. Hu, M. Lozada-Hidalgo, F. C. Wang, A. Mishchenko, F. Schedin, R. R. Nair, E. W. Hill, D. W. Boukhvalov, M. I. Katsnelson, R. A. W. Dryfe, I. V. Grigorieva, H. A. Wu, and A. K. Geim, "Proton transport through one-atom-thick crystals", Nature, 516, 227 (2014).   DOI
93 M.-S. Lee, T. Kim, S.-H. Park, C.-S. Kim, and Y.-W. Choi, "A highly durable cross-linked hydroxide ion conducting pore-filling membrane", J. Mater. Chem., 22, 13928 (2012).   DOI
94 J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen, and X. Qiu, "Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries", J. Mater. Chem., 18, 1232 (2008).   DOI
95 J. G. Austing, C. N. Kirchner, L. Komsiyska, and G. Wittstock, "Layer-by-layer modification of Nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries", J. Membr. Sci., 510, 259 (2016).   DOI
96 J.-J. Woo, S.-J. Seo, S.-H. Yun, R.-Q. Fu, T.-H. Yang, and S.-H. Moon, "Enhanced stability and proton conductivity of sulfonated polystyrene/PVC composite membranes through proper copolymerization of styrene with a-methylstyrene and acrylonitrile", J. Membr. Sci., 363, 80 (2010).   DOI
97 J. Kerres, A. Ullrich, F. Meier, and T. Haring, "Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells", Solid State Ion., 125, 243 (1999).   DOI
98 J. Kerres, W. Cui, and M. Junginger, "Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes", J. Membr. Sci., 139, 227 (1998).   DOI
99 N. R. Kang, S. Y. Lee, D. W. Shin, D. S. Hwang, K. H. Lee, D. H. Cho, J. H. Kim, and Y. M. Lee, "Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes", J. Power Sources, 307, 834 (2016).   DOI
100 S. Y. Lee, N. R. Kang, D. W. Shin, C. H. Lee, K.-S. Lee, M. D. Guiver, N. Li, and Y. M. Lee, "Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide nitrile) random copolymer", Energy Environ. Sci., 5, 9795 (2012).   DOI
101 E. Guler, Y. Zhang, M. Saakes, and K. Nijmeijer, "Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis", ChemSusChem., 5, 2262 (2012).   DOI