Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.4.273

Effect of Intermittent Pressure-Assisted Forward Osmosis (I-PAFO) Operation on Colloidal Membrane Fouling and Physical Cleaning Efficiency  

Lee, Jinwoo (Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
Kook, Seungho (Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
Kim, Sung-Jo (Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
Kim, In S. (Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
Publication Information
Membrane Journal / v.26, no.4, 2016 , pp. 273-280 More about this Journal
Abstract
Pressure assisted forward osmosis (PAFO) is recently introduced because of its improved process efficiency to overcome drawbacks of forward osmosis (FO) such as low water flux and reverse solute diffusion. However, it is known that membrane fouling becomes deteriorated by additional hydraulic pressure applied in PAFO compared to FO. This study was performed to investigate possibility of intermittent pressure-assisted forward osmosis (I-PAFO) operation for fouling mitigation using colloidal silica particles as model foulants. FO, PAFO were operated as well to compare with. Two different solution pH conditions (pH 3, 10) were applied to see the effect of electrostatic interactions between the membrane and silica particles on fouling tendency. In the results, higher water flux was observed during pressurization and pressure relaxation periods in I-PAFO than water flux of PAFO, and FO on both pH conditions. Water flux decreased less in I-PAFO than PAFO after fouling. It resulted in higher water flux recovery in I-PAFO than PAFO after physical cleaning.
Keywords
Intermittent pressure-assisted forward osmosis (I-PAFO); Colloidal fouling; Pressure relaxation; Cake enhance osmotic pressure (CEOP); Physical cleaning;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. Blandin, A. R. D. Verliefde, C. Y. Tang, and A. E. Childress, "Validation of assisted forward osmosis (AFO) process: Impact of hydraulic pressure", J. Membr. Sci., 447, 1 (2013).   DOI
2 B.-M. Jun, S.-W. Han, Y.-K. Kim, N. T. P. Nga, H.-G. Park, and Y.-N. Kwon, "Conditions for ideal draw solutes and current research trends in the draw solutes for forward osmosis process", Membr. J., 25, 132 (2015).   DOI
3 Y. T. Oh, S. H. Lee, M. Elimelech, and S. H. Lee, "Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis", J. Membr. Sci., 465, 159 (2014).   DOI
4 S. Sahebi, S. Phuntsho, J. E. Kim, S. K. Hong, and H. K. Shon, "Pressure assisted fertiliser drawn osmosis process to enhance final dilution of the fertiliser draw solution beyond osmotic equilibrium", J. Membr. Sci., 481, 63 (2015).   DOI
5 C. H. Boo, S. Y. Lee, M. Elimelech, Z. Meng, and S. K. Hong, "Colloidal fouling in forward osmosis: Role of reverse salt diffusion", J. Membr. Sci., 390-391, 277 (2012).   DOI
6 K. Lutchmiah, D. J. H. Harmsen, B. A. Wols, L. C. Rietveld, J. Quin, and E. R. Cornelissen, "Continuous and discontinuous pressure assisted osmosis (PAO)", J. Membr. Sci., 476, 182 (2015).   DOI
7 S. H. Son and J. G. Jegal, "Preparation and characterization of poly thin film composite reverse osmosis membranes using hydrophilic treated microporous supports", Membr. J., 24, 317 (2014).   DOI
8 C. Y. Tang, T. H. Chong, and A. G. Fane, "Colloidal interactions and fouling of NF and RO membranes: A review", Adv. Colloid Interface Sci., 164, 126 (2011).   DOI
9 S. Y. Lee, C. H. Boo, M. Elimelech, and S. K. Hong, "Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)", J. Membr. Sci., 365, 34 (2010).   DOI
10 G. Singh, and L. Song, "Cake compressibility of silica colloids in membrane filtration processes", Ind. Eng. Chem. Res., 45, 7633 (2006).   DOI
11 R. S. Faibish, M. Elimelech, and Y. Cohen, "Effect of interparticle electrostatic double layer interactions on permeate flux decline in crossflow membrane filtration of colloidal suspensions: An experimental investigation", J. Colloid Interface Sci., 204, 77 (1998).   DOI
12 S. K. Hong, R. S. Faibish, and M. Elimelech, "Kinetics of permeate flux decline in crossflow membrane filtration of colloidal suspensions", J. Colloid Interface Sci., 196, 267 (1997).   DOI
13 Y. W. Kim, M. Elimelech, H. K. Shon, and S. K. Hong, "Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure", J. Membr. Sci., 460, 206 (2014).   DOI
14 B. Mi, and M. Elimelech, "Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents", J. Membr. Sci., 348, 337 (2010).   DOI
15 J. Wu, P. Le-Clech, R. M. Stuetz, A. G. Fane, and V. Chen, "Effects of relaxation and backwashing conditions on fouling in membrane bioreactor", J. Membr. Sci., 324, 26 (2008).   DOI
16 M. K. Jorgensen, K. Keiding, and M. L. Chistensen, "On the reversibility of cake buildup and compression in a membrane bioreactor", J. Membr. Sci., 455, 152 (2014).   DOI
17 S. P. Hong, T. H. Bae, T. M. Tak, and A. Randall, "Fouling control in activated sludge submerged hollow fiber membrane bioreactor", Desalination, 143, 219 (2002).   DOI
18 M. L. Christensen, T. V. Bugge, B. H. Hede, M. Nierychlo, P. Larsen, and M. K. Jorgensen, "Effects of relaxation time on fouling propensity in membrane bioreactors", J. Membr. Sci., 504, 176 (2016).   DOI
19 M. Xie, J. H. Lee, L. D. Nghiem, and M. Elimelech, "Role of pressure in organic fouling in forward osmosis and reverse osmosis" J. Membr. Sci., 493, 748 (2015).   DOI