Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.135

Preparation and Characterizations of Ferroxane-Nafion Composite Membranes for PEMFC  

Shin, Mun-Sik (Department of Environmental Engineering, College of Engineering, Sangmyung University)
Oh, Gyu-Hyeon (Department of Environmental Engineering, College of Engineering, Sangmyung University)
Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.26, no.2, 2016 , pp. 135-140 More about this Journal
Abstract
In this study, the organic-inorganic composite membranes composed of iron oxide (Ferroxane) and Nafion were developed as an alternative proton exchange membranes (PEMs) in proton exchange membrane fuel cell (PEMFC). Acetic acid-stabilized lepidocrocite (${\gamma}$-FeOOH) nanoparticles (ferroxane) was synthesized, and the ferroxane-Nafion composite membranes were prepared by mixing Nafion with the ferroxane. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, thermal stability, etc. As a result, the ferroxane-Nafion composite membranes showed higher proton conductivity, IEC, thermal stability than Nafion recast membranes. The proton conductivity and IEC of the composite membrane with the best performance were $0.09S\;cm^{-1}$ and $0.906meq\;g^{-1}$, respectively.
Keywords
Fuel cell; proton exchange membrane; ferroxane-Nafion composite membrane; proton conductivity;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 M. M. Cortalezzi, J. Rose, G. F. Wells, J. Y. Bottero, A. R. Barron, and M. R. Wiesner, "Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes", J. Membr. Sci., 227, 207 (2003).   DOI
2 H. J. Lee, Y.-W. Choi, T.-H. Yang, and B. C. Bae, "Hydrocarbon composite membranes with improved oxidative stability for PEMFC", J. Korean Electrochem. Soc., 17, 44 (2014).   DOI
3 J. O. Yuk, S. J. Lee, T.-H. Yang, and B. C. Bae, "Synthesis and characterization of multi-block sulfonated poly(arylene ether sulfone) polymer membrane with different hydrophilic moieties for PEMFC", J. Korean Electrochem. Soc., 18, 75 (2015).   DOI
4 S. Y. Lee, H. J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells", Membr. J., 26, 1 (2016).   DOI
5 W. C. Hwa, D. J. Kim, and S. Y. Nam, "Characterization of SPAES composite membrane using silane based inorganics", Membr. J., 25, 5 (2015).
6 B. R. Jung, Y. Son, Y. T. Lee, and N. Kim, "Preparation of organic-inorganic hybrid PES membranes using Fe(II) clathrochelate", Membr. J., 23, 1 (2013).
7 H.-C. Chien, L.-D. Tsai, C.-P. Huang, C.-Y. Kang, J.-N. Lin, and F.-C. Chang, "Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells," Int. J. Hydrogen. Energ., 38, 13792 (2013).   DOI
8 L. Zhang, S.-R. Chae, Z. Hendren, J.-S. Park, and M. R. Wiesner, "Recent advances in proton exchange membranes for fuel cell applications", Chem. Eng. J., 204, 87 (2012).
9 H. Zhang and P. K. Shen, "Recent development of polymer electrolyte membranes for fuel cells", Chem. Rev., 12, 2780 (2012).
10 K. Sopian and W. R. Wan Daud, "Challenges and future developments in proton exchange membrane fuel cells", Renew. Energ., 31, 719 (2006).   DOI
11 D. C. Lee, H. N. Yang, S. H. Park, and W. J. Kim, "Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell," J. Membr. Sci., 452, 20 (2014).   DOI
12 H. Guo and A. S. Barnard, "Proton transfer in the hydrogenbonded chains of lepidocrocite: a computational study", Phys. Chem. Chem. Phys., 13, 17864 (2011).   DOI
13 H. Ghassemi, T. Zawodzinski, D. Schiraldi, and S. Hamrock, "Cross-linked low EW PFSA for high temperature fuel cell", ACS Symp. Ser., 12, 201 (2012).
14 V. S. Bagotsky, "Proton-exchange membrane fuel cells", pp. 41-69, John Wiley & Sons, New York, NY (2012).
15 E. M. Tsui, M. M. Cortalezzi, and M. R. Wiesner, "Proton conductivity and methanol rejection by ceramic membranes derived from ferroxane and alumoxane precursors", J. Membr. Sci., 306, 8 (2007).   DOI
16 Y. Sone, P. Ekdunge, and D. Simonsson, "Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method", J. Electrochem. Soc., 143, 1254 (1996).   DOI
17 J. Rose, M. M. Cortalezzi-Fidalgo, S. Moustier, C. Magnetto, C. D. Jones, A. R. Barron, M. R. Wiesner, and J.-Y. Bottero, "Synthesis and characterization of carboxylate-FeOOH nanoparticles (ferroxanes) and ferroxane-derived ceramics", Chem. Mater, 14, 621 (2002).   DOI
18 E. M. Tsui, M. M. Cortalezzi, and M. R. Wiesner, "Proton conductivity and methanol rejection by ceramic membranes derived from ferroxane and alumoxane precursors", J. Membr. Sci., 306, 8 (2007).   DOI
19 E. M. Tsui and M. R. Wiesner, "Fast proton-conducting ceramic membranes derived from ferroxane nanoparticle precursors as fuel cell electrolytes", J. Membr. Sci., 318, 79 (2008).   DOI
20 L. Zhang, S.-R. Chae, S. Lin, and M. R. Wiesner, "Proton-conducting composite membranes derived from ferroxane-Polyvinyl alcohol complex", Environ. Eng. Sci., 29, 124 (2012).   DOI