Browse > Article

Proton Conducting Composite Membranes Consisting of PVC-g-PSSA Graft Copolymer and Heteropolyacid  

Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Koh, Jong-Kwan (Department of Chemical and Biomolecular Engineering, Yonsei University)
Choi, Jin-Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University)
Yeon, Seung-Hyeon (Department of Chemical and Biomolecular Engineering, Yonsei University)
Ahn, Ik-Sung (Department of Chemical and Biomolecular Engineering, Yonsei University)
Park, Jin-Won (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.19, no.2, 2009 , pp. 96-103 More about this Journal
Abstract
A series of organic-inorganic composite membranes from poly(vinyl chloride) (PVC) graft copolymer electrolyte and heteropolyacid (HPA) were prepared for proton conducting membranes. First, poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA) was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC. HPA nanoparticles were then incorporated into the PVC-g-PSSA graft copolymer though the hydrogen bonding interactions, as confirmed by FT-IR spectroscopy. The proton conductivity of the composite membranes increased from 0.049 to 0.068 S/cm at room temperature with HPA contents up to 0.3 weight traction of HPA, presumably due to both the intrinsic conductivity of HPA particles and the enhanced acidity of the sulfonic acid of the graft copolymer. The water uptake decreased from 130 to 84% with the increase of HPA contents up to 0.45 of HPA weight traction, resulting from the decrease in number of water absorption sites due to hydrogen bonding interaction between the HPA particles and the polymer matrix. Thermal gravimetric analysis (TGA) demonstrated the enhancement of thermal stabilities of the composite membranes with increasing concentration of HPA.
Keywords
nanocomposite; heteropolyacid; polymer electrolyte membrane; graft copolymer; proton conductivity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. K. Lee, Y. W. Kim, J. K. Choi, B. R. Min, and J. H. Kim, 'Preparation and characterization of proton-conducting crosslinked diblock copolymler membranes', J. Appl. Polym. Sci., 107, 819 (2008)   DOI   ScienceOn
2 Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, 'Fabrication and characterization of heteropolyacid ($H_3PW_{12}O_{40}$)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications', J. Membr. Sci., 212, 263 (2003)   DOI   ScienceOn
3 M. L. Hill, Y. S. Kim, B. R. Einsla, and J. E. McGrath, 'Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells', J. Membr. Sci., 283, 102 (2006)   DOI   ScienceOn
4 M. F. Zhang and T. P. Russell, 'Graft Copolymers from Poly(vinylidene fluoride-co-chlorotrifluoroethylene) via Atom Transfer Radical Polymerizatìon', Macromolecules, 39, 3531 (2006)   DOI   ScienceOn
5 H. Zhang, J. H. Pang, D. Wang, A. Li, X. Li, and Z. Jiang, 'Sulfonated poly(arylene ether nitrile ketone) and its composite with phosphotungstic acid as materials for proton exchange membranes', J. Membr. Sci., 264, 56 (2005)   DOI   ScienceOn
6 K. D. Kreuer, 'Proton Conductivity: Materials and Applications', Chem. M$\alpha$ter., 8, 610 (1996)   DOI   ScienceOn
7 M. Kufaci, A. Bozkurt, and M. Tulu, 'Poly(ethyl-eneglycol methacrylate phosphate) and heterocycle based proton conducting composite materials', Solid State Ionics, 177, 1003 (2006)   DOI   ScienceOn
8 A. S. A. Khiar, R. Puteh, and A. K. Arof, 'Conductivity studies of a chitosan-based polymer electrolyte', Physica B: Condensed Matter, 373, 23 (2006)   DOI   ScienceOn
9 S. D. Mikhailenko, K. P. Wang, S. Kaliaguine, P. X. Xing, G. P. Robertson, and M. D. Guiver, 'Proton conducting membranes based on crosslinked sulfonated poly(ether ether ketone) (SPEEK)', J. Membr. Sci., 233, 93 (2004)   DOI   ScienceOn
10 A. Mokrini and J. L. Acosta, 'Studies of sulfonated block copolymer and its blends', Polymer, 42, 9 (2001)   DOI   ScienceOn
11 C. H. Park, C. H. Lee, Y. S. Chung, and Y. M. Lee, 'Preparation and Characterization of Cross-linked Block and Random Sulfonated Polyimide Membranes for Fuel Cell', Membrane Journal, 16, 241 (2006)   과학기술학회마을
12 J. T. Park, K. J. Lee, M. S. Kang, Y. S. Kang, and J. H. Kim, 'Nanocomposite polymer electrolytes containing silica nanoparticles: Comparison between poly(ethylene glycol) and poly(ethylene oxide) dimethyl ether', J. Appl. Polym. Sci., 106, 4083 (2007)   DOI   ScienceOn
13 J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, N. G. Park, and Y. S. Kang, 'Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles', Chem. Commun., 14, 1662 (2004)
14 B.-J. Chang, D.-J. Kim, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Synthesis and Characterization of polybenzimidazoles Containing Perfluorocyclobutane Groups for High-temperature Fuel Cell Applications', Korean Membr. J., 9, 43 (2007)   과학기술학회마을
15 Z. Wang, H. Ni, C. Zhao, X. Li, T. Fu, and H. Na, 'Investigation of sulfonated poly(ether ether ketone sulfone)/heteropolyacid composite membranes for high temperature fuel cell applications', J. Polym. Sci. B: Polym. Phys., 44, 1967 (2006)   DOI   ScienceOn
16 J. F. Hester, P. Banerjee, Y. Y. Won, A. Akthakul, M. H. Acar, and A. M. Mayes, 'ATRP of Amphiphilic Graft Copolymers Based on PVDF and Their Use as Membrane Additives', Macromolecules, 35, 7652 (2002)   DOI   ScienceOn
17 R. S. McLean, M. Doyle, and B. B. Sauer, 'High-Resolutìon Imaging of Ionic Domains and Crystal Morphology in Ionomers Using AFM Techniques', Macromolecules, 33, 6541 (2000)   DOI   ScienceOn
18 D. J. Kim, B.-J. Chang, C. K. Shin, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Preparation and Characterization of Fluorenyl Polymer Electrolyte Mem branes Containing PFCB Groups', Membrane Journal, 16, 16 (2006)
19 T. Z. Fu, C. J. Zhao, S. L. Zhong, G. Zhang, K. Shao, H. Q. Zhang, J. Wang, and H. Na, 'SPEEK/epoxy resin composite membranes in situ polymerization for direct methanol fell cell usages', J. Power Sources, 165, 708 (2007)   DOI   ScienceOn
20 J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, 'New Insights into the Coordination Mode of Silver Ions Dissolved in poly(2-ethyl-2-oxazoline) and its relation to facilitated olefin Transport', Macromolecules, 35, 5250 (2002)   DOI   ScienceOn
21 X. F. Li, D. Xu, G. Zhang, Z. Wang, C. J. Zhao, and H. Na, 'Influence of casting conditions on the properties of sulfonated poly(ether ether ketone ketone)/phosphotungstic acid composite proton exchange membranes', J. Appl. Polym. Sci., 103, 4020 (2007)   DOI   ScienceOn
22 X. Li, C. Liu, H. Lu, C. Zhao, Z. Wang, W. Xing, and H. Na., 'Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application', J. Membr. Sci., 255, 149 (2005)   DOI   ScienceOn
23 P. X. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, and S. J. Kaliagune, 'Sulfonated Poly (aryl ether ketone)s Containing Naphthalene Moieties Obtained by Direct Copolymerization as Novel Polymers for Proton Exchange Membranes', Polym. Sci. A. Polym. Chem., 42, 2866 (2004)   DOI   ScienceOn
24 M. Higa, Y. Fujino, T. Koumoto, R. Kitani, and S. Egashira, 'All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization', Electrochim. Acta, 50, 3832 (2005)   DOI   ScienceOn
25 X. L. Wang, A. Mei, M. Li, Y. Lin, and C.W. Nan, 'Effect of silane-functionalized mesoporous silica SBA-15 on performance of PEO-based composite polymer electrolytes', Solid State Ionics, 177, 1287 (2006)   DOI   ScienceOn
26 S. R. Majid and A. K. Arof, 'Proton-conducting polymer electrolyte films based on chitosan acetate complexed with $NH_4NO_3$ salt', Physica B: Condensed Matter, 355, 78 (2005)   DOI   ScienceOn