Browse > Article

Gas Separation Properties and Their Applications of High Permeable Amorphous Perfluoropolymer Membranes  

Freeman, Benny D. (Department of Chemical Engineering, Center for Energy and Environmental Resources, University of Texas at Austin)
Park, Ho-Bum (Department of Chemical Engineering, Center for Energy and Environmental Resources, University of Texas at Austin)
Publication Information
Membrane Journal / v.17, no.2, 2007 , pp. 81-92 More about this Journal
Abstract
Membrane-based separation processes are receiving increasing attention in the scientific community and industry since they provide a desirable alternative to processes that are not easy to achieve by conventional separation technologies. In particular, gas separation using polymeric membranes have annually grown so fast owing to advantages such as easy installation, no moving parts, small footprint and low energy process. The key element is definitely a polymer membrane exhibiting high permeability and high selectivity to compete with other gas separation technologies. Current polymer membranes used for commercial gas separation are a family of hydrocarbon polymers for hydrogen separation, air separation and carbon dioxide separation from natural gas sweetening. Relatively, gas or vapor separation properties of fluoropolymers are not known so much as compared with those of hydrocarbon polymers. Accordingly, in this study, membranes prepared from amorphous perfluoropolymers are of particular interest because of the unique properties of these polymers. The advantages offered by these amorphous perfluoropolymers for use in gas and vapor separation will be discussed. In addition, membrane properties and separation performance will be compared with other membranes available on the market.
Keywords
Perfluoropolymr; gas separation; vapor separation; permeability; selectivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. U. Won, J. P. Joen, and B. J. Lee, 'Recent development of fluoropolymers', Polym. Sci. Tech., 13, 724 (2002)
2 W. W. Brandt and G. A. Anysas, 'Diffusion of gases in fluorocarbon polymers', J. Appl. Polym. Sci., 7, 1919 (1963)   DOI
3 N. Yi-Yan, R. M. Felder, and W. J. Koros, 'Selective permeation of hydrocarbon gases in polytetrafluoroethylene and poly(fluoroethylene-propylene) copolymer', J. Appl. Polym. Sci., 25, 1755 (1980)   DOI   ScienceOn
4 S. Pauly, 'Permeability and diffusion data', Polymer handbook, Eds. J. Brandrup and E. H. Immergut, John Wiley & Sons, Inc., New York, NY, USA (1989)
5 M. W. Hellums, W. J. Koros, G. R. Husk, and D. R. Paul, 'Fluorinated polycarbonates for gas separation applications', J. Membr. Sci., 46, 93 (1989)   DOI   ScienceOn
6 P. R. Resnick and W. H. Buck, 'Teflon AF: A family of amorphous fluoropolymers with extraordinary properties', Fluoropolymers vol.2: properties, Eds., G. Hougham, P. E. Cassidy, K. Johns, and T. Davidson, Kluwer Academic/Plenum Publishers New York, NY, USA, pp.25-33 (1999)
7 S. M. Nemser, K. P. Callaghan, and T. C. Reppert, 'Combustion engine air supply system', US Patent 5,960,777 (1999)
8 L. M. Robeson, 'Correlation of separation factor versus permeability for polymeric membranes', J. Membr. Sci., 62, 165 (1991)   DOI   ScienceOn
9 I. Pinnau and L. G. Toy, 'Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro- 1,3-dioxole/tetrafluoroethylene', J. Membr. Sci., 109, 125 (1996)
10 S. Kulprathipanja, R. W. Neuzil, and N. Li, 'Separation of fluids by means of mixed matrix membranes', US Patent 4,740,219 (1988)
11 T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, and A. J. Hill, 'Sorption and transport in poly(2,2-bis(trifluoromethyl)-4,5-difloro-1,3-dioxoleco-tetra fluoroethylene) containing nanoscale fumed silica', Macromolecules, 36, 8406 (2003)   DOI   ScienceOn
12 S. M. Nermser and I. C. Roman, 'Perfluorinated membranes', US Patent 5,051,114 (1991)
13 R. J. Plunkett, 'Tetrafluoroethylene polymers', US Patent 2,230,654 (1941)
14 E. N. Squire, 'Amorphous copolymers of perfluoro- 2,2-dimethyl-1,3-dioxole', US Patent 4,754,009 (1988)
15 E. N. Squire, 'Optical fibers comprising cores clad with amorphous copolymers of perfluoro-2,2-dimethyl- 1,3-dioxole', US Patent 4,530,569 (1985)
16 T. H. Kim, W. J. Koros, and G. R. Husk, 'Relationship between gas separation properties and chemical structure in a series of aromatic polyimides', J. Membr. Sci., 37, 45 (1988)   DOI   ScienceOn
17 J. Scheirs, 'Modern fluoropolymers', Wiley, Victoria, Australia (1997)
18 S. Satoh and T. Suzuki, 'Rubber hose for automotive fuel line', US Patent 4,330,017 (1982)
19 T. C. Merkel, I. Pinnau, R. Prabhakar, and B. D. Freeman, 'Gas and vapor transport properties of perfluoropolymers', Materials science of membranes for gas and vapor separation, Eds., Y. Yampolskii, I. Pinnau, and B. D. Freeman, John Wiley & Sons Ltd, Chichester, England, pp.251-267 (2006)
20 T. Duncan, W. J. Koros, and R. M. Felder, 'Permeation of methyl chloride and benzene through FEP Teflon', J. Appl. Polym. Sci., 28, 209 (1983)   DOI   ScienceOn
21 H. Ohya, V. V. Kudryavtsev, and S. I. Semenova, 'Polyimide membranes - applications, fabrications, and properties', Gordon and Breach Publishers, Amsterdam, The Netherlands (1996)
22 S. A. Stern, 'Polymers for gas separations: the next decade', J. Membr. Sci., 94, 1 (1994)   DOI   ScienceOn
23 J. D. MacLachlan, 'Automotive fuel permeation resistance - A comparison of elastomeric materials', Paper No. 790657 at SAE Passenger Car Meeting, Detroit, MI, USA (1979)
24 T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, 'Ultrapermeable, reverse-selective nanocomposite membranes', Science, 296, 519 (2002)   DOI   PUBMED   ScienceOn
25 R. Mahajan, C. M. Zimmerman, and W. J. Koros, Polymer Membranes for Gas and Vapor Separation: Chemistry and Materials Science, Eds., B. D. Freeman and I. Pinnau, American Chemical Society Washington, DC, pp.277 (1999)
26 W. H. Koch, 'Developing technology for enhanced vapor recovery: Part 1-vent processors', Petroleum Equip. & Tech., 16 (2001)
27 V. Arcella, A. Ghielmi, and G. Tommasi, 'High performance perfluoropolymer films and membranes', Ann. NY Acad. Sci., 984, 226 (2003)   DOI   ScienceOn
28 J. S. McHattie, W. J. Koros, and D. R. Paul, 'Gas transport properties of polysulphones: 2. Effect of biphenol connector groups', Polymer, 32, 2618 (1991)   DOI   ScienceOn
29 J. S. Chiou and D. R. Paul, 'Gas permeation in a dry Nafion membrane', Ind. Eng. Chem. Res., 27, 2161 (1988)   DOI   ScienceOn
30 R. A. Pasternak, G. L. Burns, and J. Heller, 'Diffusion and solubility of simple gases through a copolymer of hexafluoropropylene and tetrafluoroethylene', Macromolecules, 4, 470 (1971)   DOI
31 B. D. Freeman, 'Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes', Macromolecules, 32, 375 (1999)   DOI   ScienceOn
32 R. A. Pasternak, M. V. Christensen, and J. Heller, 'Diffusion and permeation of oxygen, nitrogen, carbon dioxide, and nitrogen dioxide through polytetrafluoroethylene', Macromolecules, 3, 366 (1970)   DOI
33 M. Jia, K. V. Peinemann, and R. D. Behling, J. Membr. Sci., 289, 57 (1991)
34 T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and Y. Yampolskii, 'Gas sorption, diffusion and permeation in poly(2,2-bistrifluoro-methyl-4,5- difluoro-1,3-dioxole-co-tetrafluoro-ethylene', Macromolecule, 32, 8427 (1999)   DOI   ScienceOn
35 T. C. Merkel, B. D. Freeman, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, 'Nanoparticle on gas sorption and transport in poly(1-trimethylsilyl-1-propyne)', Macromolecules, 36, 6844 (2003)
36 H. Schroeder, 'Fluorocarbon elastomers', Rubber Technology, Ed. M. Morton, Van Nostrand Reinhold, New York, NY, USA, pp.631 (1987)
37 J. R. Pailthorp and H. E. Schroeder, 'Elastomeric terpolymers', US Patent 2,968,649 (1961)
38 J. G. Drobny, 'Technology of fluoropolymer', CRC Press, Boca Raton, FL, USA, pp.172 (2001)
39 K. Tanaka, H. Kita, M. Okano, and K. Okamoto, 'Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides', Polymer, 33, 585 (1992)   DOI   ScienceOn
40 J. E. Mark, 'Polymer data handbook', Oxford, New York, NY, USA (1999)