Browse > Article

Development and Characterization of Polymer Electrolyte Membranes Containing Polysilsesquioxane Spheres  

Hong Seong Uk (Department of Chemical Engineering, Hanbat National University)
Cheon Hun Sang (Department of Chemical Engineering, Hanbat National University)
Kim Young Baik (Department of Nano and Polymer Materials Engineering, Paichai University)
Park Hun Hwee (Department of Environmental Engineering, Hoseo University)
Publication Information
Membrane Journal / v.15, no.1, 2005 , pp. 1-7 More about this Journal
Abstract
Polymer electrolyte membranes containing polysilsesquioxane (PSQ) spheres were prepared with the blend of sulfonated poly(ether ether ketone) (SPEEK) (60%) and poly(ether sulfone) (PES) (40%). The amount of PSQ spheres was fixed at 10 wt%. The prepared polymer electrolyte membranes were characterized in terms of methanol permeability, proton conductivity, and ion exchange capacity. In all cases, both methanol permeability and proton conductivity of the polymer electrolyte membranes containing PSQ spheres were lower than the values of Nafion 117 and higher than those of SPEEK/PES (6:4) blend without PSQ spheres. The experimental results indicated that the polymer electrolyte membranes containing MS64 and VTMOS spheres were the best choice in terms of the ratio of proton conductivity to methanol permeability.
Keywords
direct methanol fuel cell; polysilsesquioxane; sulfonated poly(ether ether ketone)/poly(ether sulfone) blend; methanol permeability; proton conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kordesch and G. Simader, 'Fuel Cells and their Applications', VCH, Weinheim (1996)
2 A. Heinzel and V. M. Barragan, 'A review of the state of art of the methanol crossover in direct methanol fuel cells', J. Power Source, 84, 70 (1999)
3 Z. G. Shao, P. Joghee, and I. M. Hsing, 'Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cell', J. Membrane Sci., 229, 43 (2004)
4 J. Larminie and A. Dicks, 'Fuel Cell Systems Explained', John Wiley & Sons, West Sussex, England (2000)
5 F. Helmer and M. Metzmann, European Patent 0574 791 A2 (1993)
6 S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, 'Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell application', J. Membrane Sci., 173, 17 (2000)
7 L. Li, J. Zhang, and Y. Wang, 'Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell', J. Membrane Sci., 226, 159 (2003)
8 S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, 'Inorganic modification of proton conductive polymer membranes for direct methanol fuel cell', J. Membrane Sci., 203, 215 (2002)
9 H. S. Cheon, C. G. Lee, and S. U. Hong, 'Characterization of polymer blends of poly( ether sulfone )/sulfonated poly( ether ether ketone) for DMFC', Korean J. Ind. Eng. Chem., 16, 144 (2005)
10 J. H. Chang, J. H. Park, G. G. Park, C. S. Kim, and O. O. Park, 'Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials', J. Power Source, 124, 18 (2003)
11 D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, 'Performance evaluation of a Nafion/silica oxide hybrid membrane for direct methanol fuel cell', J. Power Source, 106, 173 (2002)
12 Y. M. Lee and H. B. Park, 'Development of membrane materials for direct methanol fuel cell', Membrane J., 10, 103 (2000)
13 S. Koter, P. Pitrowski, and J. Kerres, 'Comparative investigations of ion exchange membranes', J. Membrane Sci., 153, 83 (1999)
14 J. Cruickshank and K. Scott, 'The degree and effect of methanol crossover in the direct methanol fuel cell', J. Power Source, 70, 40 (1998)