Browse > Article
http://dx.doi.org/10.5139/JKSAS.2011.39.5.400

Study for the Deformation and Fatigue Life of a PEMFC  

Yang, Jeong-Hwan (한국항공대학교 대학원)
Park, Jung-Sun (한국항공대학교 항공우주및기계공학부)
Publication Information
Journal of the Korean Society for Aeronautical & Space Sciences / v.39, no.5, 2011 , pp. 400-407 More about this Journal
Abstract
The stress distribution and stress amplitude of a membrane are major factors to decide the mechanical fatigue life of PEMFC (Polymer Electrolyte Membrane Fuel Cell). In this paper, mechanical stresses under operating hygro-thermal condition of the membrane are numerically modelled. Contact analysis between gas diffusion layer (GDL) and the membrane is performed under various temperature-humidity conditions. The structural model has nonlinear material properties depending on temperature and relative humidity. Several geometric conditions are applied to the model. The numerical analysis results indicate that deformations of the membrane are strongly related with assembly conditions of the fuel cell. The fatigue life is predicted for practical operating condition through experimental data.
Keywords
PEMFC; FEA; Nafion; Hygro-thermal expansion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tang, H. L., Pan, M. and Wang, F., "A Mechanical Durability Comparison of Various Perfluocarbon Proton Exchange Membranes", Journal of Applied Polymer Science 109, pp. 2671–2678, 2008.   DOI   ScienceOn
2 Li, Y., Dillard, D., Case, S., Ellis, M., Lai, Y., Gittleman, C. and Miller, D., "Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters", Journal of Applied Polymer Science 194, pp. 873 -879, 2009.   DOI   ScienceOn
3 Larminie, J. and Dicks, A., Fuel Cell System Explained, John Wiley & Sons, Ltd. 2000.
4 Weber, A. Z. and Newman, J., “A Theoretical Study of Membrane Constraint in Polymer-Electrolyte Fuel Cells”, American Institute of Chemical Engineers, 50, pp. 3215– 3226, 2004.   DOI   ScienceOn
5 Craig, G., Yeh, H. L. and Daniel, M., “Durability of Perfluorosulfonic Acid Membranes for PEM Fuel Cells”, Fuel Cell Activities, 2005.
6 Huang, X., Solasi, R., Zou, Y., Feshler, M., Reifsnider K., Condit D., Burlatsky S. and Madden, T., “Mechanical Endurance of Polymer Electrolyte Membrane and PEM Fuel Cell Durability", Journal of Polymer Science, Part B, Polym Phys 44, pp. 2346–2357, 2006.   DOI   ScienceOn
7 Budinski, M., Gittleman, C., Lai, Y., Miller, D. and O'Leary, K., “Mechanical and Chemical Degradation in Automotive Fuel CellMembranes”, International Workshop on Fuel Cell Degradation, Greece, September 19-21, 2007.
8 Kusoglu, A., Karlsson, A. M., Santare, M. H., Cleghorn, S. and Johnson W. B., "Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses", Journal of Power Sources 170, pp. 345–358, 2007.   DOI   ScienceOn
9 Kleemann, J., Finsterwalder, F. and Tillmetz, W., “Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers”, Journal of Power Sources 190, pp. 92–102, 2009.   DOI   ScienceOn
10 Yaliang, T., Anette, M. K., Michael, H. S., Michael, G., Simon, C. and William, B. J., "An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane", Materials Science and Engineering, A 425, pp. 297–304 2006.   DOI
11 Lim, S. J., Park, G. G., Park, J. S., Sohn, Y. J., Yim, S. D., Yang, T. H., Hong, B. K. and Kim, C. S., "Investigation of freeze/thaw durability in polymer electrolyte fuel cells", International Journal of Hydrogen Energy, pp. 1-7, 2010.