Browse > Article
http://dx.doi.org/10.5139/JKSAS.2010.38.11.1105

Part2 : Quantitative Analyses of Accumulated Ice Shapes with Various Icing Conditions  

Son, Chan-Kyu (부산대학교 항공우주공학과 대학원)
Oh, Se-Jong (부산대학교 항공우주공학과)
Yee, Kwan-Jung (부산대학교 항공우주공학과)
Publication Information
Journal of the Korean Society for Aeronautical & Space Sciences / v.38, no.11, 2010 , pp. 1105-1114 More about this Journal
Abstract
Ice shapes accumulated on the aircraft surfaces are categorized into rime and glaze ice, which are highly dependent on various parameters such as ambient temperature, liquid water contents (LWC), mean volumetric droplet diameter and freestream velocity. In this study, quantitative analyses on the ice accretion have been attempted in a systematical manner and the key findings are as follows. First, the increase of freestream velocity can cause tremendous change in the ice accumulation such as the growth of ice accretion area, ice heading direction and maximum thickness of ice horn. Second, LWC is found to be linearly proportional to the ice accretion area. Third, the effects of ambient temperature on incoming water mass seem to be relatively small in comparison with LWC and freestream velocity. Finally, it was shown that MVD has only a little influence on ice shapes. However, it may increase the ice accretion area by increasing the droplet impacting range.
Keywords
Aircraft icing; Ice accumulated shapes; Ice accumulated area; Ice heading direction; Maximum thickness of ice;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Gary A. R., Brian M. B., “Users Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE)”, NASA/CR-185129, May, 1990.
2 Messinger, B. L., "Equilibrium Temperature of an Unheated Icing Surface as Function of Airspeed", Journal of the Aeronautical Sciences, Vol. 20, No. 1, 1953, pp. 29-42.   DOI
3 Dean, M., Thomas, R., Ben, B., Frank, M., Walter, J., S., "NASA/FAA/NCAR Supercoolde Large Droplet Icing Flight Research: Summary of Winter 96-97 Flight Operations", NASA/TM-1998-206620, January, 1998.
4 Wright W. B., "Further Refinement of the LEWICE SLD Model", NASA/CR-2006-214132, May, 2006.
5 반기성, “겨울철 항공기 안전에 영향을 주는 착빙(icing)", 항공진흥 통권 제40호, 2005, pp. 158-174.
6 정성기, 이창훈, 신성민, 명노신, 조태환, 정훈화, 정재홍, “KC-100 항공기의 표면발생 Icing 형상 및 공력 영향성 연구”, 한국항공우주학회지, 제38권, 제6호, 2006, pp. 519-628.
7 Kind R. J., Potapczuk M. G., Golia F. C., Shah A. D., "Experimental and Computational Smulation of In-flight Icing Phenomena", Progress in Aerospace Sciences, Vol. 34, No. 5-6, pp. 527-345.
8 Gent, R. W., Dart, N. P., Cansdale, J. T., "Aircraft Icing", Philosophical Transactions of the Royal Society A, Vol. 358, No. 1778, pp. 2873-2911.   DOI   ScienceOn
9 Fedral Avation Administration, "FAA Inflight Aircraft Icing Plane", U.S. Department of Transportation, Washington D.C., April 1997.
10 신훈범, 정인면, 정주현, 최태훈, “결빙강도 예측을 위한 수치방법 연구”, 한국항공우주학회 춘계학술발표회 논문집, April, 2008, pp. 553-557.
11 Sogin, H. H., "A Design Manual For Thermal Anit-Icing Systems", Wright Air Deveoopment Center, 616,AF33616444, December, 1954.
12 백선우, 이관중, 오세종, “2차원 날개의 서리얼음 형상 예측”, 한국전산유체공학회지, 제14권, 제1호, 2009, pp. 45-52.
13 손찬규, 오세종, 이관중, “2차원 에어포일의 유리얼음 형상 예측 코드 개발”, 한국항공우주학회지, 제38권, 제8호, 2010, pp. 747-757.
14 Wright W. B., "Users Manual for the Improved NASA Lewis Ice Accretion Code LEWICE 1.6", NASA/CR-198355, June, 1995.