Browse > Article

Application of Mechanoluminescence for the Dynamic Visualization of an Alumina Fracture  

Kim, Ji-Sik (School of Nano & Materials Science Engineering, Kyungpook National University)
Publication Information
Abstract
The propagation of cracks was quantitatively analyzed in $Al_2O_3$ ceramic using the mechanoluminescence (ML) of $SrAl_2O_4$:Eu,Dy. The bridging zones behind the crack tip were clearly detected in the crack path of $Al_2O_3$ within a realistic time frame. The magnitudes and shapes of the bridging stress distributions changed with the advancing cracks. They continued to change with the change in the applied load even after the cessation of crack propagation. Effective toughening then commenced, and the applied stress intensity factors dramatically increased up to ~50 MPa $\sqrt{m}$. The expected $K_{Tip}$ values based on the instantaneous bridging stress distributions obtained from the ML observations deviated greatly from those obtained from the measurement using the conventional crack tip lengths; rather, they support the results obtained when bridging tips were used in the quasidynamic crack propagations.
Keywords
mechanoluminescence; quasidynamic fracture; crack propagation; grain bridging;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J.S. Kim, Y.N. Kwon, N. Shin, and K.S. Sohn, Acta Mater. 51, 6437 (2003).   DOI   ScienceOn
2 J.S. Kim, Y.N. Kwon, N. Shin, and K.S. Sohn, Acta Mater. 53 4337 (2005).   DOI   ScienceOn
3 H. Ichimaru, and Pezzotti, Mater. Sci. Eng. A 326 261 (2002).
4 R.W. Steinbrech, A. Reichl, and W. Schaarwachter, J. Am. Ceram. Soc. 73 2009 (1990).   DOI
5 A.J. Rosakis, O. Samudrala, and D. Coker, Science 284 1337 (1999).   DOI
6 B. Zhang, J.B. Li, Y. Deng, Z.D. Guan, Smart mater. Struct. 10 846 (2001).
7 ASTM Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM E399-83.
8 J.J. Kruzic , R.M. Cannon, J.W. Ager III, and R.O. Ritchie, Acta Mater. 53 2595 (2005).   DOI   ScienceOn
9 X.Z. Hu, E.H. Luts, and M. Swain, J. Am. Ceram. Soc. 74 1828 (1991).   DOI
10 J. Rodel, J. Kelly, and B.R. Lawn, J. Am. Ceram. Soc. 73 3313 (1990).   DOI
11 Q. Shan, and R.J. Dewhurst, Appl. Phys. Lett. 62 2649 (1993).   DOI   ScienceOn
12 J.C. Hay, and K.W. White, Acta Metal. Mater. 40 3017 (1992).   DOI   ScienceOn
13 C.J. Gilbert, and R.O. Ritchie, Acta Mater. 46 609 (1998).   DOI   ScienceOn
14 T. Yoshimura, N. Akiyama, M. Yoshida, and T. Kobayashi, Int. J. Jpn Soc. Prec. Eng. 29 168 (1995).
15 H. Nakano, and S. Nagai, Jpn J. Appl. Phys. 32 2540 (1993).   DOI
16 M.E. Ebrahimi, Chevalier, and Fantozzi, J. Eur. Ceram. Soc. 23 943 (2003).   DOI   ScienceOn
17 K.S. Sohn, D.H. Park, and J.S. Kim, J. Electrochem Soc. 152, H161 (2005)   DOI   ScienceOn
18 X.Z. Hu, and F.H. Wittmann, J. Mater. Civil Eng. 2 15 (1990).   DOI
19 K.S. Sohn, S.Y. Seo, Y.N. Kwon, and H.D. Park, J. Am. Ceram. Soc. 85, 712 (2002).
20 R.D. Geraghity, J.C. Hay, and K.W. White, Acta Mater. 47 1345 (1999).   DOI   ScienceOn
21 R.E. Grimes, G.P. Kelkar, and L. Guazzone, K.W. White, J. Am. Ceram. Soc. 73 1399 (1990).   DOI
22 J. S. Kim, K. Kibble, M. Stanford, Y. N. Kwon, K.-S. Sohn, Met. Mat. Int. 14, 165 (2008).   DOI   ScienceOn
23 T. Fett, D. Munz, and G. Thun, J. Am. Ceram. Soc. 78 949 (1995).   DOI   ScienceOn
24 S.J. Bennison, and B.R. Lawn. Acta Mater. 37 2659 (1989).   DOI   ScienceOn