Browse > Article

Photopolymer Composed of a Photosensitive Polymer Binder Bearing a Chalcone Moiety in the Repeating Unit  

Cho, Min-Ju (Department of Chemistry, Center for Electro-&Photoresponsive Molecules, Korea University)
Yoon, Hyuk (College of Environment&Applied Chemistry, Institute of Natural Science, Kyung Hee University)
Feng, Dejun (College of Environment&Applied Chemistry, Institute of Natural Science, Kyung Hee University)
Yoon, Han-na (College of Environment&Applied Chemistry, Institute of Natural Science, Kyung Hee University)
Choi, Dong-Hoon (Department of Chemistry, Center for Electro-&Photoresponsive Molecules, Korea University)
Publication Information
Abstract
New photopolymers were designed and prepared using the photosensitive polymer binders. Holographic gratings were successfully fabricated in these photopolymer samples by a conventional optical interference method. We also investigated the effect of photocrosslink in the polymer binder on the diffraction behavior of a new photopolymer. The dynamic behavior of the grating formation was monitored by changing exposure intensity in terms of the diffraction efficiency. Particularly, we focused our efforts in observing the variation of diffraction efficiency during a post UV curing process. The surface topographical change of photopolymer layer before and after Vis/UV light exposure was observed by atomic force microscope (AFM). We inscribed the gratings of the glass diffuser on the surface of the photopolymer and investigated their diffusing properties. The diffusers with photopolymer with the main chain polymer binder showed relatively good viewing angle of around ${\pm}30{\circ}$. Two kinds of photopolymer showed similar uniformity of around 47-54%.
Keywords
photopolymer; holographic grating; diffraction efficiency; UV exposure; diffuser;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Tork, P. Nagtegaele, and T. V. Galstian, Synth. Metals, 127, 81 (2002)   DOI
2 R. K. Kostuk, Appl. Opt., 38, 1357 (1999)   DOI
3 T. Lippert, C. David, M. Hauer, T. Masubuchi, H. Masuhara, K. Nomura, O. Nuyken, C. Phipps, J. Robert, T. Tada, K. Tomita, and A. Wokaun, Appl. Surf Sci., 186, 14 (2002)   DOI   ScienceOn
4 T. J. Trout, W. J. Gambogi, K. W. Steijn, and S. R. Mackara, in SID '00 Digest (2000) p.1
5 V. Weiss and E. Millul, Appl. Surf. Sci., 106; 293 (1996)   DOI
6 N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, Jpn. J Appl. Phys. 38, 5928 (1999)   DOI
7 A. Pu, K. Curtis, and D. Psaltis, Opt. Eng., 35, 2824 (1996)   DOI   ScienceOn
8 U. S. Rhee, H. J. Caulfield, C. S. Vikram, and J. Shamir, Appl. Opt., 34, 846 (1995)   DOI
9 W. J. Gambogi. A. M. Weber, and T. J. Trout, in Proc. SPIE, 2043 (1993) p.2
10 P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lorincz, G. Erdei, and G. Szarvas, Synth. Metals, 124, 145 (2001)   DOI   ScienceOn
11 D. H. Choi, D. J. Feng, H. Yoon, and S. H. Choi, in Proc. SPIE, 4929 (2002) p.220
12 O. Henneberg, T. Geue, M. Saphiannikova, U. Pietsch, P. Rochon, and A. Natansohn, Appl. Surf Sci. 182, 272 (2001)   DOI   ScienceOn
13 D. H. Choi. D. J. Feng, H. N.Yoon, and S. H. Choi, Macromol. Res., 11(1), 36 (2003)   DOI   ScienceOn