Browse > Article
http://dx.doi.org/10.15433/ksmb.2020.12.2.108

Cytotoxicity Assessment of Shellfishes from Domestic Fish Market  

Kim, Young-Sang (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University)
Jayawardena, Thilina U. (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University)
An, Lu Yu (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University)
Je, Jun-Geon (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University)
Nagahawatta, D.P. (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University)
Liyanage, N.M. (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University)
Jeon, You-Jin (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.12, no.2, 2020 , pp. 108-114 More about this Journal
Abstract
A variety of shellfish species sold for human consumption are available for purchase in the domestic fish market. The microalgae families inhabit the ocean, where planktons supply the main nutritional resource for the growth of shellfish. Some phytoplanktons produce toxic compounds that are accumulated in shellfish and ultimately cause toxicity in humans. This article reports the cytotoxicity of commercially available shellfish species. Accordingly, hot water extract (HWE) and an aqueous fraction of 50% methanol extract (MEE-AF) showed no significant cytotoxicity on the two cell lines (i.e., HL-60 and Vero cell lines), but 50% methanol extract (MEE) in 3, 6 samples showed 50% cytotoxic effects on HL-60 cells, and 1, 4 samples showed 40%, 20% cytotoxic effects on Vero cells, respectively. In addition, their consequential dichloromethane fractions (MEE-DF) exhibited significant toxicities at the highest concentration (1,000 ㎍/ml) on HL-60 and Vero cells. Since the shellfish samples showed cytotoxicity in the dichloromethane fraction, it is possible that the dichloromethane fraction contains marine toxins. Further research will be needed to identify the toxic components from each sample.
Keywords
Marine toxin; Shellfish; Cytotoxicity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Rhodes, L., Smith, K., Selwood, A., McNabb, P., Munday, R., Suda, S., . . . Hallegraeff, G. (2011). Dinoflagellate Vulcanodinium rugosum identified as the causative organism of pinnatoxins in Australia, New Zealand and Japan. Phycologia, 50, 624-628.   DOI
2 Geiger M, Desanglois G, Hogeveen K, Fessard V, Leprêtre T, Mondeguer F, Guitton Y, Herve F, Sechet V, Grovel O, Pouchus YF, Hess P. 2013. Cytotoxicity, fractionation and dereplication of extracts of the dinoflagellate Vulcanodinium rugosum, a producer of pinnatoxin G. Mar Drugs. 11, 3350-3371.   DOI
3 Cembella, A. D. 2018. Chapter 16 Harmful Algal Species Fact Sheets: Alexandrium.
4 Rhodes, L., Smith, K., Selwood, A., McNabb, P., van Ginkel, R., Holland, P., & Munday, R. 2010. Production of pinnatoxins by a peridinoid dinoflagellate isolated from Northland, New Zealand. Harmful Algae, 9, 384-389.   DOI
5 Selwood, A. I., Miles, C. O., Wilkins, A. L., van Ginkel, R., Munday, R., Rise, F., & McNabb, P. 2010. Isolation, Structural Determination and Acute Toxicity of Pinnatoxins E, F and G. Journal of Agricultural and Food Chemistry, 58, 6532-6542.   DOI
6 Wang, L., Ryu, B., Kim, W.-S., Kim, G. H., & Jeon, Y.-J. 2017. Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratin ocytes and zebrafish. Algae, 32, 379-388.   DOI
7 Todd, E. 1997. Seafood-associated diseases and control in Canada. Revue scientifique et technique, 162, 661-672.   DOI
8 Ferreiro, S. F., Carrera, C., Vilarino, N., Louzao, M. C., Santamarina, G., Cantalapiedra, A. G., & Botana, L. M. 2015. Acute Cardiotoxicity Evaluation of the Marine Biotoxins OA, DTX-1 and YTX. Toxins, 7, 1030-1047.   DOI
9 최병래, 박미선, 전임기, 박승열, & 김희태. 1999. 한국 연근해 유용 연체동물도감. 부산, 구덕출판사.
10 Chain, E. P. o. C. i. t. F. 2010. Scientific Opinion on marine biotoxins in shellfish - Cyclic imines (spirolides, gymnodimines, pinnatoxins and pteriatoxins). EFSA Journal, 8, 1628.
11 Takada, N., Umemura, N., Suenaga, K., & Uemura, D. 2001. Structural determination of pteriatoxins A, B and C, extremely potent toxins from the bivalve Pteria penguin. Tetrahedron Letters, 42, 3495-3497.   DOI
12 Ramos, V., & Vasconcelos, V. 2010. Palytoxin and analogs: biological and ecological effects. Marine drugs, 8, 2021-2037.   DOI
13 Chou, T., Haino, T., Kuramoto, M., & Uemura, D. 1996. Isolation and structure of pinnatoxin D, a new shellfish poison from the okinawan bivalve Pinna muricata. Tetrahedron Letters, 37, 4027-4030.   DOI
14 Hess, P., Abadie, E., Herve, F., Berteaux, T., Sechet, V., Araoz, R., ... Amzil, Z. 2013. Pinnatoxin G is responsible for atypical toxicity in mussels (Mytilus galloprovincialis) and clams (Venerupis decussata) from Ingril, a French Mediterranean lagoon. Toxicon, 75, 16-26.   DOI
15 Molgo, J., Marchot, P., Araoz, R., Benoit, E., Iorga, B. I., Zakarian, A., . . . Servent, D. 2017. Cyclicimine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors. Journal of Neurochemistry, 142, 41-51.
16 Takada, N., Umemura, N., Suenaga, K., Chou, T., Nagatsu, A., Haino, T.,Uemura, D. 2001. Pinnatoxins B and C, the most toxic components in the pinnatoxin series from the Okinawan bivalve Pinna muricata. Tetrahedron Letters, 42, 3491-3494.   DOI
17 Sawelew, L., Gault, F., Nuccio, C., Perez, Y., & Lorquin, J. 2018. Characterisation of palytoxin from an undescribed Palythoa (Anthozoa: Zoantharia: Sphenopidae) with significant in vitro cytotoxic effects on cancer cells at picomolar doses. bioRxiv. 292219.
18 Bingnan He, Xia Wang, Lai Wei, Baida Kong, Yuanxiang Jin, Xiaoxian Xie, Zhengwei Fu, 2018. β-Cypermethrin and its metabolite 3-phenoxybenzoic acid induce cytotoxicity and block granulocytic cell differentiation in HL-60 cells, Acta Biochimica et Biophysica Sinica, 50, Pages 740-747.   DOI
19 Chen, L., & Xie, P. 2016. Mechanisms of Microcyst in-induced Cytotoxicity and Apoptosis. Mini Reviews in Medicinal Chemistry, 16, 1018-1031.   DOI
20 Konowalchuk J, Speirs JI, Stavric S. 1977. Vero response to a cytotoxin of Escherichia coli. Infect Immun. 18, 775-779.   DOI
21 Geiger, M., Desanglois, G., Hogeveen, K., Fessard, V., Leprêtre, T., Mondeguer, F., ... & Pouchus, Y. F. 2013. Cytotoxicity, fractionation and dereplication of extracts of the dinoflagellate Vulcanodiniumrugosum, a producer of pinnatoxin G. Marine drugs, 11, 3350-3371.   DOI
22 Nielsen, L. T., Hansen, P. J., Krock, B., & Vismann, B. 2016. Accumulation, transformation and breakdown of DSP toxins from the toxic dinoflagellate Dinophysis acuta in blue mussels, Mytilus edulis. Toxicon, 117, 84-93.   DOI
23 Authority, E. F. S. 2009. Marine biotoxins in shellfis h - Saxitoxin group. EFSA Journal, 7, 1019.
24 Brand, L. E., Campbell, L., & Bresnan, E. 2012. Karenia: The biology and ecology of a toxic genus. Harmful Algae, 14, 156-178.   DOI
25 Cembella, A. D., Lewis, N. I., & Quilliam, M. A. (2000). The marine dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as the causative organism of spirolide shellfish toxins. Phycologia, 39, 67-74.   DOI