Browse > Article
http://dx.doi.org/10.15433/ksmb.2018.10.2.073

Analysis of High-Value Materials through Continuous Cultivation System from Pre-and Post-Milking of Chlorella protothecoides  

Jeong, Yu Jeong (Biois. Co., Ltd.)
Kim, Seong Hak (Biois. Co., Ltd.)
Lee, Won Young (Biois. Co., Ltd.)
Kim, Sung Chun (Biois. Co., Ltd.)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.10, no.2, 2018 , pp. 73-82 More about this Journal
Abstract
Chlorella are source of valuable compounds as lipids, proteins, carbohydrates, bioactive compounds. To continuous obtain the high-value materials of Chlorella protothecoides, we performed continuous cultivation after applying milking techniques to C. protothecoides grown with culture for 7 days in optical panel bioreactor (OPBR) system. Fatty acid and lutein in extracts from pre- and post-milking of C. protothecoides were analyzed using gas chromatography and high performance liquid chromatography, respectively. C. protothecoides were rich in unsaturated fatty acids with a high content of oleic acid(C18:1), which is suitable as a biofuel feedstock. The fatty acid content in pre- and post-milking of C. protothecoides was decreased from 126.424mg/g d.w. to 119.341mg/g d.w, and the lutein content decreased from 0.258mg/g d.w. to 0.178mg/g d.w. The results of this study demonstrate the feasibility of milking C. protothecoides for production of lipids for biofuels production. It was confirmed that microalgae can continuously obtain lutein present in a trace amount through a continuous culture from milking.
Keywords
Chlorella protothecoides; Milking; Continuous cultivation; Fatty acid; Lutein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Canter, C. E., Blowers, P., Handler, R. M. and Shonnard, D. R. 2015. Implications of widespread algal biofuels production on macronutrient fertilizer supplies: Nutrient demand and evaluation of potential Alternate Nutrient Sources. Appl. Energy. 143(1), 71-80.   DOI
2 Chojnacka, K. and Marquez-Rocha, F. J. 2004. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Bio-Technol. 3, 21-34.
3 Cordero, B. F., Obraztsova, I., Couso, I., Leon, R. Vargas, M. A. and Rodriguez, H. 2011. Enhancement of lutein production in Chlorella sorokiniana by improvement of culture conditions and random mutagenesis. Marine Drugs. 9, 1607-1624.   DOI
4 Fakhry, E. M. and Maghraby, D. M. 2013. Fatty acids composition and biodiesel characterization of Dunaliella salina. J. Water Resour. Protect. 894-899.
5 Farooq, W., Lee, Y. C., Ryu, B. G., Kim, B. H., Kim, H. S., Choi, Y. E. and Yang, J. W. 2013. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour. Technol. 132, 230-238.   DOI
6 Gale, C. R., Hall, N. F., Phillips, D. I. and Martyn, C. N. 2001. Plasma antioxidant vitamins and carotenoids and age-related cataract. Ophthalmology 108, 1992-1998.   DOI
7 Gao, Y. X., Nagy, B., Liu X, Simandi., B. and Wang, Q. 2009. Supercritical $CO_2$ extraction of lutein esters from marigold (Tagetes erecta L.) enhanced by ultrasound. J. Supercrit. Fluids 49, 345-350.   DOI
8 Garces, R. and Mancha, M. 1993. One-step lipid extraction and fatty acid methylester preparation from fresh plant tissues. Anal. Biochem. 211(1), 139-143.   DOI
9 Gong, Y. M. and Jiang, M. L. 2011. Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol. Lett. 33, 1269-1284.   DOI
10 Gonzalez, S., Astner, S., An, W., Goukassian, D. and Pathak, M. A. 2003. Dietary lutein/zeaxanthin decreases ultraviolet B-induced epidermal hyperproliferation and acute inflammation in hairless mice. J. Invest Dermatol. 121, 399-405.   DOI
11 Granado, F., Olmedilla, B. and Blanco, I. 2003. Nutritional and clinical relevance of lutein in human health. Brit. J. Nutr. 90, 487-502   DOI
12 Granado, F., Olmedilla, B., Blanco, I. and Rojas-Hidalgo, E. 1992. Carotenoid composition in raw and cooked Spanish vegetable. J. Agr. Food Chem. 40, 2135-2140.   DOI
13 Graziani, G., Schiavo, S., Nicolai, M. A., Buono, S., Fogliano, V., Pinto, G. and Pollio, A. 2013. Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food Funct. 4, 144-152.   DOI
14 Guedes, A. C., Amaro, H. M. and Malcata, F. X. 2011. Microalgae as sources of carotenoids. Mar. Drugs. 9, 625-644.   DOI
15 Gurr, M. I., Harwood, J. L. and Frayn, K. N. 2002. Lipid Biochemistry 5 th (eds). Blackwell Science Oxford.
16 Huerlimann, R., de Nys, R. and Heimann, K. 2010. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng. 107(2), 245-257.   DOI
17 Hejazi, M. A. and Wijffels, R. H. 2004. Milking of microalgae. Trends Biotechnol. 22, 189-194.   DOI
18 Hou, C. T. 2005. Production of value-added industrial products from vegetable oils, In Handbook of Industrial Biocatalysis, C. T. Hou (Eds), CRC Press, Boca Raton. pp 7-1.
19 Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 54, 621-639.   DOI
20 Jeong, Y. J., Kim, S. H., Min H. G. and Kim S. C. 2018. The content analysis of amino acids including GABA of Chlorella protothecoides under mixotrophic culture. J. Mar. Biosci. Biotechnol. 10(1), 18-25.   DOI
21 Kamal-Eldin, A. and Andersson, R. 1997. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J. Am. Oil Chem. Soc. 74, 375-380.   DOI
22 Li, H. B., Jiang, Y. and Chen, F. 2002. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. J. Agric. Food Chem. 50, 1070-1072.   DOI
23 Liang, Y., Sarkany, N. and Cui, Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31, 1043-1049.   DOI
24 Mares-Perlman, J. A., Millen, A. E. and Ficek, T. L., Hankison, S. E. 2002. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J. Nutr. 132, 518S-524S.   DOI
25 Sanchez, J. F., Fernandez, J. M., Acien, F. G., Rueda, A. and Perez-Parra, J. 2008. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 43, 398-405.   DOI
26 Bone, R. A., Landrum, J. T. and Tarsis, S. L. 1985. Preliminary identification of the human macular pigment. Vision Res. 25, 1521-1535.
27 Burdge, G. 2006. Metabolism of $\alpha$-linolenic acid in humans. Prostaglandins Leukot. Essent. Fatty acids. 75, 161-168.   DOI
28 Mata, T. M., Martins, A. A. and Caetano, N. S. 2010. Microalgae for biodiesel production and other applications, Renew. Sust. Energ. Rev. 14(1), 217-232.   DOI
29 Pittman, J. K., Dean, A. P. and Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102(1), 17-25.   DOI
30 Ramos, M. J., Fernandez, C. M., Casas, A., Rodriguez, L. and Perez, A. 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100, 261-268.   DOI
31 Shi, X., Zhang, X. and Chen, F. 2000. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Technol. 27, 312-318.   DOI
32 Schenk. P. M., Thomas-Hall, S. R., Stephens, E., Marx, U., Mussgnug, J. and Posten, C. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. 1, 20-43.   DOI
33 Semba, R. D. and Dagnelie, G. 2003. Are lutein and zeaxanthin conditionally essential nutrients for eye health. Med. Hypotheses. 61, 465-472.   DOI
34 Shi, X., Wu, Z. and Chen, F. 2006. Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol. Nutr. Food Res. 50, 763-768.   DOI
35 Shi, X. M., Jiang, Y. and Chen, F. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Prog. 18, 723-727.   DOI
36 van Niekerk, P. J. and Burger, A. E. C. 1985. The estimation of the composition of edible oil mixtures. J. Am. Oil Chem. Soc. 62, 531-538.   DOI
37 Simopoulos, A. P. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54(3), 438-463.   DOI
38 Spector, A. A. 1999. Essentiality of fatty acids. Lipids. 34, S1-S3.   DOI
39 Tsao, R., Yang, R., Young, J. C., Zhu, H. and Manolis, T. 2004. Separation of geometric isomers of native lutein esters in marigold (Taget Eserecta L.) by high-performance liquid chromatography mass spectrometry. J. Chromatogr. A. 1045, 65-70.   DOI
40 Wang, C., Kim, J. H. and Kim, S. W. 2014. Synthetic biology and metabolic engineering for marine carotenoids : new opportunities and future prospects. Mar. Drugs. 12, 4810-4832.   DOI