Browse > Article
http://dx.doi.org/10.15433/ksmb.2016.8.2.045

Effect of Nitrogen Deficiency on Cell Growth and Fatty Acids Production of Nannochloropsis oculata K-1281  

Hong, Seong-Joo (National Marine Bioenergy Center & Dept. of Biological Engineering, Inha University)
Yim, Narae (National Marine Bioenergy Center & Dept. of Biological Engineering, Inha University)
Han, Mi-Ae (National Marine Bioenergy Center & Dept. of Biological Engineering, Inha University)
Yoo, Danbee (National Marine Bioenergy Center & Dept. of Biological Engineering, Inha University)
Lee, Choul-Gyun (National Marine Bioenergy Center & Dept. of Biological Engineering, Inha University)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.8, no.2, 2016 , pp. 45-53 More about this Journal
Abstract
Most of microalgae shift their metabolic pathways toward the fatty acid biosynthesis following nitrogen deprivation. Recent studies on Nannochloropsis species, oleaginous microalgae, have been performed to investigate the regulation of contents and compositions of fatty acids under stressful condition. The objective of this experiment is to identify the effect of nitrogen on cell growth and fatty acids production in Nannochloropsis oculata K-1281 and compare fatty acid composition response to nitrogen deficiency between N. oculata LB2164 and K-1281. The fatty acids content in N. oculata K-1281 was increased up to 210%, while the growth rate was decreased under nitrogen deficient condition. The contents of C16:0 and C16:1 increased dramatically in both N. oculata K-1281 and LB2164, while the contents of C20:4 and C20:5 increased in N. oculata LB2164. The fatty acids content and composition in N. oculata K-1281 returned following addition of nitrogen after nitrogen starvation. These results demonstrated that fatty acid contents and compositions under nitrogen deficiency will provide the understanding of fatty acid synthesis in microalgae.
Keywords
microalgae; Nannochloropsis oculta; nitrogen deficiency; fatty acids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Leon-Banares, R., Gonzalez-Ballester, D., Galvan, A., and Fernandez, E. 2004. Transgenic microalgae as green cell-factories. Trends Biotechnol. 22, 45-52.   DOI
2 Burja, A. M., Dhamwichukorn, S., and Wright, P. C. 2003. Cyanobacterial postgenomic research and systems biology. Trends Biotechnol. 21, 504-511.   DOI
3 Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306.   DOI
4 Kim, Z.-H., Park, H., Ryu, Y.-J., Shin, D.-W., Hong, S.-J., Tran, H.-L., Lim, S.-M., and Lee, C.-G. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27 1763-1773.   DOI
5 Griffiths, M. J., van Hille, R. P., and Harrison, S. T. 2012. Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J. Appl. Phycol. 24, 989-1001.   DOI
6 Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M. R. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100-112.   DOI
7 Su, C.-H., Chien, L.-J., Gomes, J., Lin, Y.-S., Yu, Y.-K., Liou, J.-S., and Syu, R.-J. 2011. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J. Appl. Phycol. 23, 903-908.   DOI
8 Daboussi, F., Leduc, S., Marechal, A., Dubois, G., Guyot, V., Perez-Michaut, C., Amato, A., Falciatore, A., Juillerat, A., and Beurdeley, M. 2014. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat. Commun. 5, 3831.   DOI
9 Li, Y., Han, D., Hu, G., Sommerfeld, M., and Hu, Q. 2010. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 107, 258-268.   DOI
10 Da Silva, A. F., Lourenco, S. O., and Chaloub, R. M. 2009. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat. Bot. 91, 291-297.   DOI
11 Francisco, E. C., Neves, D. B., Jacob-Lopes, E., and Franco, T. T. 2010. Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J. Chem. Technol. Biotechnol. 85, 395-403.   DOI
12 Solovchenko, A., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., and Merzlyak, M. 2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J. Appl. Phycol. 20, 245-251.   DOI
13 Thomas, D. N., and Dieckmann, G. S. 2002. Antarctic Sea Ice--a Habitat for Extremophiles. Science 295, 641-644.   DOI
14 Simionato, D., Block, M. A., La Rocca, N., Jouhet, J., Marechal, E., Finazzi, G., and Morosinotto, T. 2013. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot. Cell 12, 665-676.   DOI
15 Dong, H.-P., Williams, E., Wang, D.-z., Xie, Z.-X., Hsia, R.-c., Jenck, A., Halden, R., Chen, F., and Place, A. 2013. Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen star vation and recovery. Plant Physiol. 162, 1110-1126.   DOI
16 Shin, H., Hong, S. -J., Kim, H., Yoo, C., Lee, H., Choi, H. -K., Lee, C. -G. and Cho, B. K. 2015. Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresour. Technol. 194, 57-66   DOI
17 Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621-639.   DOI
18 Russell, N. J. 1997. Psychrophilic bacteria-Molecular adaptations of membrane lipids. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 118, 489-493.   DOI