Browse > Article
http://dx.doi.org/10.15433/ksmb.2016.8.1.010

Potential Health Risks from Persistent Organic Pollutants (POPs) in Marine Ecosystem  

Lee, Youn Ju (Department of Pharmacology, School of Medicine, Catholic University of Daegu)
Jang, Jae-Seok (Department of Thoracic and cardiovascular surgery, School of Medicine, Catholic University of Daegu)
Yang, Jae-Ho (Department of Pharmacology, School of Medicine, Catholic University of Daegu)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.8, no.1, 2016 , pp. 10-17 More about this Journal
Abstract
A wide-spread contamination of persistent organic pollutants (POPs) such as dioxins, PCBs, PBDEs in the aquatic ecosystem has generated a great concern over the potential risk for these substances to impact marine biotas and food web. Since a major exposure route of these substances to the humans is through the consumption of food including fish and marine byproducts, the consumption of contaminated products has been a great public health concern. Exposure to POPs has been associated with a wide spectrum of adverse effects including reproductive, developmental, immunologic, carcinogenic, and neurotoxic effects. This review covers the background information of key POPs substances and the recent development of toxicity studies including the mode of action. Because neurotoxic effects of some POPs have been observed in humans at low concentrations, polychlorinated biphenyl (PCB), a representative chemical of POPs, is focused to discuss the possible mode(s) of action for the neurotoxic effects. This review provides the updates of toxicity studies on POPs and paves ways to discuss a possible implication of contaminated marine biota over the human health among the marine biotechnology researchers.
Keywords
Persistent Organic Pollutants (POPs); PCBs; Neruotoxicity; Marine; Ecosystem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Altmann, L., Mundy, W.R., Ward, T.R., Fastabend, A., Lilienthal, H. 2001. Developmental exposure of rats to a reconstituted PCB mixture or Aroclor 1254: effects on long-term potentiation and [H-3]MK-801 binding in occipital cortex and hippocampus. Toxicol. Sci. 61, 321-330.   DOI
2 Alves, L.M., Nunes, M., Marchand. P., Le Bizec, B., Mendes, S., Correia, J.P., Lemos, M.F., Novais, S.C. 2016. Blue sharks (Prionace glauca) as bioindicators of pollution and health in the Atlantic Ocean: Contamination levels and biochemical stress responses. Sci. Total. Environ. 29, 563-564.
3 Barghi, M., Choi, S.D., Kwon, H.O., Lee, Y.S., Chang, Y.S. 2016. Influence of non-detect data-handling on toxic equivalency quantities of PCDD/Fs and dioxin-like PCBs: A case study of major fish species purchased in Korea. Environ. Pollut. 214, 532-538.   DOI
4 Battaini F. 2001. Protein kinase C isoforms as therapeutic targets in nervous system disease states. Pharmacol. Res. 44, 353-361.   DOI
5 Branchi, I., Capone, F., Vitalone, A., Madia, F., Santucci, D., Alleva, E., Costa, L.G. 2005. Early developmental exposure to BDE 99 or Aroclor 1254 affects neurobehavioural profile: interference from the administration route. Neurotoxicology. 26, 183-192.   DOI
6 Denison, M.S., Heath-Pagliuso, S. 1998. The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals. Bull. Environ. Contam. Toxicol. 61, 557-568.   DOI
7 Denison, M.S., Nagy, S.R. 2003. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43, 309-334.   DOI
8 Doering, J.A., Giesy, J.P., Wiseman, S., Hecker, M. 2013. Predicting the sensitivity of fishes to dioxin-like compounds: possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain. Environ. Sci. Pollut. Res. Int. 20, 1219-1224.   DOI
9 Eriksson, P. 1997.Developmental neurotoxicity of environmental agents in the neonate. Neurotoxicology. 18, 719-726.
10 Fonnum, F., Mariussen, E. 2009. Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J. Neurochem. 111, 1327-1347.   DOI
11 Headrick, M.L., Hollinger, K., Lovell, R.A., Matheson, J.C. 1999. PBBs, PCBs, and dioxins in food animals, their public health implications. Vet. Clin. North. Am. Food Anim. Pract. 15, 109-131.   DOI
12 Huwe, J.K. 2002. Dioxins in food: a modern agricultural perspective. J. Agric. Food. Chem. 50, 1739-1750.   DOI
13 Kang, J.H., Jeong, W., Park, Y., Lee, S.Y., Chung, M.W., Lim, H.K., Park, I.S., Choi, K.H., Chung, S.Y., Kim, D.S., Park, C.S., Hwang, O., Kim, J. 2002. Aroclor 1254-induced cytotoxicity in catecholaminergic CATH.a cells related to the inhibition of NO production. Toxicology. 177, 157-166.   DOI
14 Inglefield, J.R., Mundy. W.R., Shafer, T.J. 2001. Inositol 2,4,5-triphosphate receptor-sensitive $Ca^{2+}$ release, store-operated $Ca^{2+}$ entry, and cAMP responsive element binding protein phosphorylation in developing cortical cells following exposure to polychlorinated biphenyls. J. Pharmacol. Exp. Ther. 297, 762-773.
15 Ivar do Sul, J.A., Costa, M.F. 2014. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 185, 352-364.   DOI
16 Jacobson, J.L., Jacobson, S.W. 1996. Dose-response in perinatal exposure to polychlorinated biphenyls (PCBs): the Michigan and North Carolina cohort studies. Toxicol. Ind. Health. 12, 435-445.   DOI
17 Karchner, S.I., Franks, D.G., Kennedy, S.W., Hahn, M.E. 2006. The molecular basis for differential dioxin sensitivity in birds: role of the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA. 103, 6252-6257.   DOI
18 Kim, S.K., Yoon, J. 2014. Chronological trends of emission, environmental level and human exposure of POPs over the last 10 years (1999-2010) in Korea: implication to science and policy. Sci. Total. Environ. 1, 470-471.
19 Kodavanti, P.R.S., Shafer, T.J., Ward, T.R., Mundy, W.R., Freudenrich, T., Harry, G.J., Tilson, H.A. 1994. Differential effects of polychlorinated biphenyl congeners on phosphoinositide hydrolysis and protein kinase C translocation in rat cerebellar granule cells. Brain. Res. 662, 75-82.   DOI
20 Mandal, P.K. 2005. Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. J. Comp. Physiol. B. 175, 221-230.   DOI
21 Mariussen, E., Fonnum, F. 2006. Neurochemical targets and behavioral effects of organohalogen compounds: an update. Crit. Rev. Toxicol. 36, 253-289.   DOI
22 Okey, A.B., Riddick, D.S., Harper, P.A. 1994. The Ah receptor: mediator of the toxicity of 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) and related compounds. Toxicol. Lett. 70, 1-22.   DOI
23 Rogan, W.J., Gladen, B.C., Hung, K.L., Koong, S.L., Shih, L.Y., Taylor, J.S., Wu, Y.C., Yang, D., Ragan, N.B., Hsu, C.C. 1988. Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan. Science. 241, 334-336.   DOI
24 Safe, S. 1990. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit. Rev. Toxicol. 21, 51-88.   DOI
25 Safe, S. 1994. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit. Rev. Toxicol. 24, 87-149.   DOI
26 Safe, S. 1998. Development validation and problems with the toxic equivalency factor approach for risk assessment of dioxins and related compounds. J. Anim. Sci. 76, 134-141.   DOI
27 Schecter, A., Birnbaum, L., Ryan, J.J., Constable, J.D. 2006. Dioxins: an overview. Environ. Res. 101, 419-428.   DOI
28 Seegal, R.F., Okoniewski, R.J., Brosch, K.O., Bemis, J.C. 2002. Polychlorinated biphenyls alter extraneuronal but not tissue dopamine concentrations in adult rat striatum: an in vivo microdialysis study. Environ. Health. Perspect. 110, 1113-1117.   DOI
29 Smith, J.W., Evans, A.T., Costallm, B., Smythe, J.W. 2002. Thyroid hormones, brain function and cognition: a brief review. Neurosci. Biobehav. Rev. 26, 45-60.   DOI
30 Shim, W.J., Thompson, R.C. 2015. Microplastics in the Ocean. Arch. Environ. Contam. Toxicol. 69, 265-268.   DOI
31 Sweatt, J.D. 1999. Toward a molecular explanation for long term potentiation. Learn. Mem. 6, 399-416.   DOI
32 Tanabe, S. 1988. PCB problems in the future: foresight from current knowledge. Environ. Pollut. 50, 5-28.   DOI
33 Van den Berg, M., Birnbaum, L.S., Denison, M., DeVito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., Peterson, R.E. 2006. The 2005 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like co mpounds. Toxicol. Sci. 93, 223-241.   DOI
34 Winneke, G., Bucholski, A., Heinzow, B., Kramer, U., Schmidt, E., Walkowiak, J., Wiener, J.A., Steingruber, H.J. 1998. Developmental neurotoxicity of polychlorinated biphenyls (PCBS): cognitive and psychomotor functions in 7-month old children. Toxicol. Lett. 28, 102-103.
35 Yang, J.H., Kodavanti, P.R.S. 2001. Possible molecular targets of halogenated aromatic hydrocarbons in neuronal cells. Biochem. Biophys. Res. Commun. 280, 1372-1377.   DOI
36 Yang, J.H., Derr-Yellin, E.C., Kodavanti, P.R.S. 2003. Alterations in brain protein kinase C isoforms following developmental exposure to polychlorinated biphenyl mixture. Mol. Brain. Res. 111, 123-135.   DOI
37 Christensen, K.Y., Raymond, M.R., Thompson, B.A., Anderson, H.A. 2016. Fish Consumption, Levels of Nutrients and Contaminants, and Endocrine-Related Health Outcomes Among Older Male Anglers in Wisconsin. J. Occup. Environ. Med. [Epub ahead of print] PMID:272 53230
38 Yun, J.S., Na, H.K., Park, K.S., Lee, Y.H., Kim, E.Y., Lee, S.Y., Kim, J.I., Kang, J.H., Kim, D.S., Choi, K.H. 2005. Protective effects of vitamin E on endocrine disruptors, PCB-induced dopaminergic neurotoxicity. Toxicology. 216, 140-146.   DOI