Browse > Article
http://dx.doi.org/10.15433/ksmb.2014.6.1.017

Clay-based Management for Removal of Harmful Red Tides in Korea: A Multi-perspective Approach  

Choi, Moon-Hee (Department of Beauty and Cosmetology, Graduate School of Industry, Chosun University)
Lee, Soon Chang (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Oh, You-Kwan (Biomass and Waste Energy Laboratory, Korea Institute of Energy Research (KIER))
Lee, Hyun Uk (Division of Materials Science, Korea Basic Science Institute (KBSI))
Lee, Young-Chul (Department of BioNano Technology, Gachon University)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.6, no.1, 2014 , pp. 17-25 More about this Journal
Abstract
Periodically, harmful algal blooms (HABs) have occurred, with impacts on various areas including public health, tourism, and aquatic ecosystems, especially aquacultured and caged fisheries. To prevent or manage invasions of HABs into fish farms on an emergency basis, many methods have been proposed. Frequently over the past 30 years in coastal countries, treatments of clay and clay mixed with polyaluminum chloride (PAC) and chitosan have been tested for HAB-removal effectiveness in both the laboratory and the field. In Korea, yellow loess clay (hwangto) has been dispersed using electrolytic clay dispensers, both to decrease the amount of yellow loess clay's usage in containers and enhance HAB-removal efficiency. However, this emergency method has limitations, among which is the requirement for more effective controlling agents for field applications. Thus, in this paper, we review technologies for clay-based red tides prevention and control and their limitations, and, further, introduce next-generation algicidal technologies for the emergency protection of fish farms.
Keywords
Clay; Red tide; Management; Algicide; Fish farm;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sengco, M.R. and D.M. Anderson. 2004. Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51, 169-172.   DOI   ScienceOn
2 Anderson, D.M. 2009. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast. Manage. 52, 342-347.   DOI
3 Lee, Y.-C., E.S. Jin, et al. 2013. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides. Sci. Rep. 3, 1292 (1-8).   DOI
4 Park, T.G., W.A. Lim, Y.T. Park, C.K. Lee and H.J. Jeong. 2013. Economic impact, management and mitigation of red tides in Korea.Harmful Algae 30S, S131-S143.
5 Kim, C.S., S.G. Lee and H.G. Kim. 2000. Biochemical responses of fish exposed to a harmful dinoflagellate Cochlodinium polykrikoides. J. Exp. Mar. Biol. Ecol. 254, 131-141.   DOI   ScienceOn
6 Kwok, C.-T., J.P. van de Merwe, J.M.Y. Chiu and R.S.S. Wu. 2012. Antioxidant responses and lipid peroxidation in gills and hepatopancreas of the mussel Perna viridis upon exposure to the red-tide organism Chattonella marina and hydrogen peroxide. Harmful Algae 13, 40-46.   DOI
7 Atkins, R., T. Rose, R.S. Brown and M. Robb. 2001. The microcystis cyanobacteria bloom in the Swan River-February 2000. Water Sci. Technol. 43, 107-114.
8 Shirota, A. 1989. Red tide problem and countermeasures. Int. J. Aq. Fish. Technol. 1, 25-38, 195-293.
9 Anderson, D.M. 1997. Turning back the harmful red tide. Nature 388, 513-514.   DOI   ScienceOn
10 Lee, Y.-J., J.-K. Choi, E.-K. Kim, S.-H. Youn and E.-J. Yang. 2008. Field experiments on mitigation of harmful algal blooms using a Sophorolipid-yellow clay mixture and effects on marine plankton. Harmful Algae 7, 154-162.   DOI
11 Gustafsson, S., M. Hultberg, R.I. Figueroa and K. Rengefors. 2009. On the control of HAB species using low biosurfactant concentrations. Harmful Algae 8, 857-863.   DOI
12 Seo, J.-K., C.-H. Kim, et al. 2003. The algicidal effect of antimicrobial peptide, Mastoparan B. J. Fish Pathol. 16, 193-201.   과학기술학회마을
13 Kohno, D., Y. Sakiyama, et al. 2007. Cloning and characterization of a gene encoding algicidal serine protease from Pseudoalteromonas sp. strain A28. J. Environ. Biotechnol. 7, 99-102.
14 Park, S.-C., J.-K. Lee, S.W. Kim and Y. Park. 2011. Selective algicidal action of peptides against harmful algal bloom species. PLoS One 6, e26733.   DOI
15 Li, D., H. Zhang, et al. 2014. A novel algicide: evidence of the effect of a fatty acid compound from the marine bacterium, Vibrio sp. BS02 on the harmful dinoflagellate, Alexandrium tamarense. PLoS One 9, e91201.   DOI
16 Kim, Y.-M., Y. Wu, et al. 2012. Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. Mar. Biotechnol. 14, 312-322.   DOI   ScienceOn
17 Sengco, M.R., J.A. Hagstrom, E. Graneli and D.M. Anderson. 2005. Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. Harmful Algae 4, 261-274.   DOI
18 Wu, Y., Y. Lee, et al. 2014. A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control. World J. Microbiol. Biotechnol. 30, 1603-1614.   DOI
19 Jeong, S.-W., S.M. Yun, et al. 2014. Can the algicidal material Ca-aminoclay be harmful when applied directly to a natural ecosystem? an assessment using microcosm experiments. J. Hazard. Mater. in preparation.
20 Sengco, M.R., A. Li, K. Tugend, D. Kulis and D.M. Anderson. 2001. Removal of red- and brown-tide cells using clay flocculation laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens. Marine Ecol. Prog. Ser. 210, 41-53.   DOI
21 Song, Y.C., S.Sivakumar,et al. 2010. Removal of Cochlodinium polykrikoides by dredged sediment: a field study. Harmful Algae 9, 227-232.   DOI
22 Pan, G., J. Chen. and D.M. Anderson. 2011. Modified local sands for the mitigation of harmful algal blooms. Harmful Algae 10, 381-387.   DOI
23 Avinimelech, Y., B.W. Troeger and L.W. Reed. 1982. Mutual flocculation of algae and clay: evidence and implications. Science 216, 63-65.   DOI   ScienceOn
24 Cerff, M., M. Morweiser, et al. 2012. Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration. Bioresour. Technol. 118, 289-295.   DOI
25 Shumway, S.E., D.M. Frank, L.M. Ewart and J.E. Ward. 2003. Effect of yellow loess on clearance rate in seven species of benthic, filter-feeding invertebrates. Aquacult. Res. 34, 1391-1402.   DOI
26 Jeong, H., J.H. Yim, et al. 2005. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res. 33, 7066-7073.   DOI   ScienceOn
27 http://en.wikipedia.org/wiki/Thiazolidinedione
28 Lee, Y.-C., W.-K. Park and J.-W. Yang. 2011. Removal of anionic metals by amino-organoclay for water treatment. J. Hazard. Mater. 190, 652-658.   DOI   ScienceOn
29 Lee, Y.-C., B. Kim, et al. 2013. Harvesting of oleaginous Chlorella sp. by organoclays. Bioresour. Technol. 132, 440-445.   DOI
30 Farooq, W., Y.-C. Lee, et al. 2013. Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem. 15, 749-755.   DOI
31 Lee, Y.-C., M.I. Kim, M.-A. Woo, H.G. Park and J.-I. Han. 2013. Effective peroxidase-like activity of a water-solubilized Fe-aminoclay for use in immunoassay. Biosens. Bioelectron. 42, 373-378.   DOI
32 Huang, W.-C. and J.-D. Kim. 2013. Cationic surfactant-based method of simultaneous harvesting and cell disruption of a microalgal biomass. Bioresour. Technol. 149, 579-581.   DOI
33 Lee, Y.-C., Y.S. Huh, et al. 2013. Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresour. Technol. 137, 74-81.   DOI   ScienceOn
34 Choi, M.-H., Y. Hwang, et al. 2014. Aquatic ecotoxicity effect of engineered aminoclay nanoparticles. Ecotox. Environ. Safe. 102, 34-41.   DOI
35 Han, H.-K., Y.-C. Lee, M.-Y. Lee, A.J. Patil and H.-J. Shin. 2011. Magnesium and calcium organophyllosilicates: synthesis and in vitro cytotoxicity study. ACS Appl. Mater. Interfaces 3, 2564-2572.   DOI
36 Shin, Y.C. and Y.S. Kim. 2001. Method for controlling the harmful algal bloom with ammonium compound. Korean patent no. 10-0295553.
37 Park, S.Y, H.U. Lee, et al. 2014. Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl. Mater. Interfaces 6, 3365-3370.   DOI
38 Lee, H.U., S.Y.Park,et al.2014. Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci. Rep. 4, 4665 (1-7).
39 Baek, S.H., M.-C. Jang, et al., 2013. Algicidal effects on Heterosigma akashiwo and Chattonella marina (Raphidophyceae), and toxic effects on natural plankton assemblages by a thiazolidinedione derivative TD49 in a microcosm. J. Appl. Phycol. 25, 1055-1064.   DOI
40 Baek, S.H., M. Son, et al., 2013. Algicidal activity of the thiazolidinedione derivative TD49 against the harmful dinoflagellate Heterocapsa circularisquama in a mesocosm enclosure. J. Appl. Phycol. 25, 1555-1565.   DOI
41 Lee, Y.-C., E.J. Kim, D.A. Ko, and J.-W. Yang. 2011. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil. J. Hazard. Mater. 196, 101-108.   DOI