Browse > Article
http://dx.doi.org/10.17135/jdhs.2016.16.6.401

Understanding of Cementum Formation by the Wnt/β-Catenin Signaling  

You, Young-Jae (Department of Oral Anatomy and Histology, School of Dentistry, Chonbuk National University)
Yang, Jin-Young (Department of Dental Hygiene, Daejeon Institute of Science and Technology)
Publication Information
Journal of dental hygiene science / v.16, no.6, 2016 , pp. 401-408 More about this Journal
Abstract
Periodontal disease is one of the major dental diseases. Currently, various methods are used for healing and successful regeneration of periodontal tissue damaged by periodontal disease. The periodontal ligament and alveolar bone have received considerable interest for use in periodontal tissue regeneration and induction. However, as the functions of the factors required for tooth attachment and key regulatory factors for periodontal tissue regeneration in the cementum have recently been identified, interest in cementum formation and regeneration has increased. Dental cementum forms in the late phase of tooth development because of the reciprocal regulatory interaction between cervical loop epithelial cells and surrounding mesenchymal cells, which is regulated by various gene signaling networks. Many attempts have been made to understand the regulatory factors and cellular and molecular mechanisms associated with new cementum formation. In this paper, we reviewed the study outcomes to date on the regulatory factors that induce cementum formation and regeneration, focusing on understanding the roles and functions of Wnt signaling in the regulation of cementum formation. In addition, we aimed to obtain information on the useful reciprocal regulatory factors that mediate cementum formation and regeneration through a series of molecular mechanisms.
Keywords
Cementogenesis; Dental cementum; Epithelial mesenchymal transition; Wnt signaling pathway;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Gao J, Symons AL, Haase H, Bartold PM: Should cementoblasts express alkaline phosphatase activity? Preliminary study of rat cementoblasts in vitro. J Periodontol 70: 951-959, 1999.   DOI
2 Foster BL, Nagatomo KJ, Bamashmous SO, et al.: The progressive ankylosis protein regulates cementum apposition and extracellular matrix composition. Cells Tissues Organs 194: 382-405, 2011.   DOI
3 Ten Cate AR: The development of the periodontium--a largely ectomesenchymally derived unit. Periodontol 2000 13: 9-19, 1997.   DOI
4 Terling C, Heymann R, Rozell B, Obrink B, Wroblewski J: Dynamic expression of E-cadherin in ameloblasts and cementoblasts in mice. Eur J Oral Sci 106 Suppl 1:137-142, 1998.   DOI
5 Jung HS, Lee DS, Lee JH, et al.: Directing the differentiation of human dental follicle cells into cementoblasts and/or osteoblasts by a combination of HERS and pulp cells. J Mol Histol 42: 227-235, 2011.   DOI
6 Bruckner RJ, Rickles NH, Porter DR: Hypophosphatasia with premature shedding of teeth and aplasia of cementum. Oral Surg Oral Med Oral Pathol 15: 1351-1369, 1962.   DOI
7 Beertsen W, VandenBos T, Everts V: Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res 78: 1221-1229, 1999.   DOI
8 Grzesik WJ, Cheng H, Oh JS, et al.: Cementum-forming cells are phenotypically distinct from bone-forming cells. J Bone Miner Res 15: 52-59, 2000.   DOI
9 Fisher LW, Fedarko NS: Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44 Suppl 1: 33-40, 2003.   DOI
10 Thesleff I, Tummers M: Tooth organogenesis and regeneration. Harvard Stem Cell Institute, Cambridge, 2008.
11 Sakisaka Y, Tsuchiya M, Nakamura T, Tamura M, Shimauchi H, Nemoto E: Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells. Exp Cell Res 336: 85-93, 2015.   DOI
12 Xiang L, Chen M, He L, et al.: Wnt5a regulates dental follicle stem/progenitor cells of the periodontium. Stem Cell Res Ther 5: 135, 2014.   DOI
13 Yang Z, Hai B, Qin L, et al.: Cessation of epithelial Bmp signaling switches the differentiation of crown epithelia to the root lineage in a ${\beta}$-catenin-dependent manner. Mol Cell Biol 33: 4732-4744, 2013.   DOI
14 Ruspita I, Miyoshi K, Muto T, Abe K, Horiguchi T, Noma T: Sp6 downregulation of follistatin gene expression in ameloblasts. J Med Invest 55: 87-98, 2008.   DOI
15 Aurrekoetxea M, Irastorza I, García-Gallastegui P, et al.: Wnt/${\beta}$-Catenin regulates the activity of epiprofin/Sp6, SHH, FGF, and BMP to coordinate the stages of odontogenesis. Front Cell Dev Biol 4: 25, 2016.
16 Behrens J, von Kries JP, Kühl M, et al.: Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382: 638-642, 1996.   DOI
17 Cadigan KM, Liu YI: Wnt signaling: complexity at the surface. J Cell Sci 119: 395-402, 2006.   DOI
18 Huelsken J, Behrens J: The Wnt signalling pathway. J Cell Sci 115: 3977-3978, 2002.   DOI
19 Veeman MT, Axelrod JD, Moon RT: A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5: 367-377, 2003.   DOI
20 Hämmerlein A, Weiske J, Huber O: A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/beta-catenin complex. Cell Mol Life Sci 62: 606-618, 2005.   DOI
21 Clevers H, Nusse R: Wnt/${\beta}$-catenin signaling and disease. Cell 149: 1192-1205, 2012.   DOI
22 Willert K, Brink M, Wodarz A, Varmus H, Nusse R: Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J 16: 3089-3096, 1997.   DOI
23 Niida A, Hiroko T, Kasai M, et al.: DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 23: 8520-8526, 2004.   DOI
24 Cong F, Varmus H: Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci U S A 101: 2882-2887, 2004.   DOI
25 Wang B, Li H, Liu Y, et al.: Expression patterns of Wnt/${\beta}$-catenin signaling molecules during human tooth development. J Mol Histol 45: 487-496, 2014.   DOI
26 Han P, Ivanovski S, Crawford R, Xiao Y: Activation of the canonical Wnt signaling pathway induces cementum regeneration. J Bone Miner Res 30: 1160-1174, 2015.   DOI
27 Han P, Wu C, Chang J, Xiao Y: The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/${\beta}$-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials 33: 6370-6379, 2012.   DOI
28 Zhang R, Yang G, Wu X, Xie J, Yang X, Li T: Disruption of Wnt/${\beta}$-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int J Biol Sci 9: 228-236, 2013.   DOI
29 Nemoto E, Koshikawa Y, Kanaya S, et al.: Wnt signaling inhibits cementoblast differentiation and promotes proliferation. Bone 44: 805-812, 2009.   DOI
30 Lim WH, Liu B, Cheng D, Williams BO, Mah SJ, Helms JA: Wnt signaling regulates homeostasis of the periodontal ligament. J Periodontal Res 49: 751-759, 2014.   DOI
31 Bae CH, Lee JY, Kim TH, et al.: Excessive Wnt/${\beta}$-catenin signaling disturbs tooth-root formation. J Periodontal Res 48: 405-410, 2013.   DOI
32 Jager A, Gotz W, Lossdorfer S, Rath-Deschner B: Localization of SOST/sclerostin in cementocytes in vivo and in mineralizing periodontal ligament cells in vitro. J Periodontal Res 45: 246-254, 2010.   DOI
33 Kuchler U, Schwarze UY, Dobsak T, et al.: Dental and periodontal phenotype in sclerostin knockout mice. Int J Oral Sci 6: 70-76, 2014.   DOI
34 Saygin NE, Tokiyasu Y, Giannobile WV, Somerman MJ: Growth factors regulate expression of mineral associated genes in cementoblasts. J Periodontol 71: 1591-1600, 2000.   DOI
35 Cao Z, Liu R, Zhang H, et al.: Osterix controls cementoblast differentiation through downregulation of Wnt-signaling via enhancing DKK1 expression. Int J Biol Sci 11: 335-344, 2015.   DOI
36 Foster BL, Popowics TE, Fong HK, Somerman MJ: Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 78: 47-126, 2007.   DOI
37 Narayanan AS, Ikezawa K, Wu D, Pitaru S: Cementum specific components which influence periodontal connective tissue cells. Connect Tissue Res 33: 19-21, 1995.   DOI
38 Saygin NE, Giannobile WV, Somerman MJ: Molecular and cell biology of cementum. Periodontol 2000 24: 73-98, 2000.   DOI
39 McKee MD, Zalzal S, Nanci A: Extracellular matrix in tooth cementum and mantle dentin: localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 245: 293-312, 1996.   DOI
40 Bae HS, Cho YS: The effect of over-expression and inactivation of nuclear factor I-C on the dentin matrix gene expression of MDPC-23 odontoblasts. J Dent Hyg Sci 9: 427-433, 2009.
41 Worapamorn W, Li H, Pujic Z, Xiao Y, Young WG, Bartold PM: Expression and distribution of cell-surface proteoglycans in the normal Lewis rat molar periodontium. J Periodontal Res 35: 214-224, 2000.   DOI
42 Chen J, Sasaguri K, Sodek J, Aufdemorte TB, Jiang H, Thomas HF: Enamel epithelium expresses bone sialoprotein (BSP). Eur J Oral Sci 106 Suppl 1: 331-336, 1998.   DOI
43 Choi JM, Moon DH, Lee JH: Expression of dynamin II in ameloblast during mouse tooth development. J Dent Hyg Sci 12: 486-492, 2012.
44 Yin X, Li J, Salmon B, et al.: Wnt signaling and its contribution to craniofacial tissue homeostasis. J Dent Res 94: 1487-1494, 2015.   DOI
45 Nemoto E, Sakisaka Y, Tsuchiya M, et al.: Wnt3a signaling induces murine dental follicle cells to differentiate into cementoblastic/osteoblastic cells via an osterix-dependent pathway. J Periodontal Res 51: 164-174, 2016.   DOI
46 Silverio KG, Davidson KC, James RG, et al.: Wnt/${\beta}$-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells. J Periodontal Res 47: 309-319, 2012.   DOI
47 Kim TH, Lee JY, Baek JA, et al.: Constitutive stabilization of ${\beta}$-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys Res Commun 412: 549-555, 2011.   DOI
48 Yang J, Wang SK, Choi M, et al.: Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Mol Genet Genomic Med 3: 40-58, 2015.   DOI
49 Sarkar L, Sharpe PT: Expression of Wnt signalling pathway genes during tooth development. Mech Dev 85: 197-200, 1999.   DOI
50 Shibata S, Dias RA, Hashimoto-Uoshima M, Abe T, Yanagishita M: Immunohistochemical localization of syndecan-1 in the dental follicle of postnatal mouse teeth. J Periodontol 78: 1322-1328, 2007.   DOI
51 Dias RA, Shibata S, Hashimoto-Uoshima M, Podyma-Inoue KA, Ishikawa I, Yanagishita M: Syndecan-1 expression during the formation of junctional epithelium. J Periodontol 76: 696-704, 2005.   DOI
52 Lin M, Li L, Liu C, et al.: Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth. Dev Dyn 240: 432-440, 2011.   DOI
53 Bosshardt DD, Schroeder HE: Cementogenesis reviewed: a comparison between human premolars and rodent molars. Anat Rec 245: 267-292, 1996.   DOI
54 Grzesik WJ, Narayanan AS: Cementum and periodontal wound healing and regeneration. Crit Rev Oral Biol Med 13: 474-484, 2002.   DOI
55 Bae SS, Ku Y: The prevalence of enamel projection on molar teeth extracted from dental patients. J Dent Hyg Sci 7: 207-211, 2007.
56 Arzate H, Zeichner-David M, Mercado-Celis G: Cementum proteins: role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontol 2000 67: 211-233, 2015.   DOI
57 Rooker SM, Liu B, Helms JA: Role of Wnt signaling in the biology of the periodontium. Dev Dyn 239: 140-147, 2010.
58 Duan P, Bonewald LF: The role of the Wnt/${\beta}$-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 77: 23-29, 2016.   DOI
59 Popowics T, Foster BL, Swanson EC, Fong H, Somerman MJ: Defining the roots of cementum formation. Cells Tissues Organs 181: 248-257, 2005.   DOI
60 Chatterjee S: Cementogenesis and its significance. Ann Dent Res 2: 51-56, 2012.
61 Bosshardt D, Schroeder HE: Evidence for rapid multipolar and slow unipolar production of human cellular and acellular cementum matrix with intrinsic fibers. J Clin Periodontol 17: 663-668, 1990.   DOI