Browse > Article
http://dx.doi.org/10.13161/kibim.2022.12.4.001

AR system for FAB construction management using BIM data under fast track condition  

Lee, Sang-Won (삼성물산)
Lee, Kwang-Soo (삼성전자)
Choi, Sung-In (삼성중공업)
Ryu, Seong-Chan (삼성SDS)
Park, Jung-Seo (삼성중공업)
Publication Information
Journal of KIBIM / v.12, no.4, 2022 , pp. 1-18 More about this Journal
Abstract
New Fabrication Facility (FAB) construction is performed with Building Information Modeling (BIM) based design. The BIM design data keep updated during the FAB construction. To improve fast-track construction management, a Fabrication Facility Augmented Reality (FABAR) was developed. This study introduces a FABAR system development process and shows performance evaluation results of the FABAR prototype system. The FABAR is implemented with three major modules: Augmented Reality (AR) visualization unit (Room-box) to transfer big BIM data to AR data, AR registration and tracking unit to match AR with real scape and to keep AR coordination in real, and AR data management unit to enhance usability. The prototype performance results were as follows: visualization of design BIM data via AR within 24 hours, precise AR registration and tracking registration, and appropriate usability to support FAB construction management at site. The results indicate that the FABAR is applicable for FAB construction management. Especially, the BIM data transformation method using Room-box in this study signifies a new construction management approach using fluctuating BIM design data in the fast track construction condition.
Keywords
FAB(Fabrication Facility); AR(Augmented Reality); Building Information Modeling (BIM); Fast track Construction; Usability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chen, H., Hou, L., Zhang, G. (Kevin), Moon, S. (2021). Development of BIM, IoT and AR/VR technologies for fire safety and upskilling. Automation in Construction, 125(January), 103631.
2 Chen, K., Chen, W., Cheng, J. C. P., Wang, Q. (2020). Developing Efficient Mechanisms for BIM-to-AR / VR Data Transfer. 1(c), pp. 1-16.
3 Choi, S,, Pa rk, J,, Lee J., Pa rk, I., Choi, D,. (2019). Development of Augmented Reality System for Productivity Enhancement in Offshore Plant Constructiontle. SAMSUNG Best Paper Award.
4 Davila Delgado, J. M., Oyedele, L., Demian, P., Beach, T. (2020). A research agenda for augmented and virtual reality in architecture, engineering and construction. Advanced Engineering Informatics, 45(April), 101122.
5 Dayton, E., Henriksen, K. (2007). Communication failure: Basic components, contributing factors, and the call for structure. Joint Commission Journal on Quality and Patient Safety, 33(1), pp. 34-47.   DOI
6 Eklundh, K. S. (1988). Explicit and Implicit Feedback in Computer-Mediated Communication. Applications of Distributed Systems, pp. 147-153.
7 Fernandez del Amo, I., Erkoyuncu, J. A., Roy, R., Palmarini, R., Onoufriou, D. (2018). A systematic review of Augmented Reality content-related techniques for knowledge transfer in maintenance applications. Computers in Industry, 103, pp. 47-71. https://doi.org/10.1016/j.compind.2018.08.007   DOI
8 Garbett, J., Hartley, T., Heesom, D. (2021). A multi-user collaborative BIM-AR system to support design and construction. In Automation in Construction 122(Issue Mvc).
9 Hull, E., Jackson, K., Dick, J. (2011). Requirements Engineering.
10 Lee, S., Alzoubi, H. H., Kim, S. (2017). The effect of interior design elements and lighting layouts on prospective occupants' perceptions of amenity and efficiency in living rooms. Sustainability, 9(7).
11 Penate-Sanchez, A., Andrade-Cetto, J., Moreno-Noguer, F. (2013). Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(10), pp. 2387-2400.   DOI
12 Schiavi, B., Havard, V., Beddiar, K., Baudry, D. (2022). BIM data flow architecture with AR/VR technologies: Use cases in architecture, engineering and construction. Automation in Construction, 134(October 2021), 104054.
13 Sidani, A., Matoseiro Dinis, F., Duarte, J., Sanhudo, L., Calvetti, D., Santos Baptista, J., Pocas Martins, J., Soeiro, A. (2021). Recent tools and techniques of BIM-Based Augmented Reality: A systematic review. Journal of Building Engineering, 42(March).
14 Singh, V., Gu, N., Wang, X. (2011). A theoretical framework of a BIM-based multi-disciplinary collaboration platform. Automation in Construction, 20(2), pp. 134-144. https://doi.org/10.1016/j.autcon.2010.09.011   DOI
15 Steffen, J. H., Gaskin, J. E., Meservy, T. O., Jenkins, J. L., Wolman, I. (2019). Framework of Affordances for Virtual Reality and Augmented Reality. Journal of Management Information Systems, 36(3), pp. 683-729.
16 Wildenauer, A. A. (2020). Critical Assessment of the Existing Definitions of Bim Dimensions on the Example of Switzerlan. International Journal of Civil Engineering and Technology (Ijciet), 11(4).
17 Zhou, Y., Luo, H., Yang, Y. (2017). Implementation of augmented reality for segment displacement inspection during tunneling construction. Automation in Construction, 82, pp. 112-121.   DOI