1 |
Tsai, T. H. Liou, D. S. Kuo, L. S. Chen, P. H., 2009, "Rapid Mixing Between Ferro-nanofluid and Water in a Semi-active Y-type Micromixer," Sens. Actuators A-Phys., Vol. 153(2), pp. 267-273.
DOI
|
2 |
Chen, C. Y. Chen, C. Y. Lin, C. Y. Hu, Y. T., 2013, "Magnetically Actuated Artificial Cilia for Optimum Mixing Performance in Microfluidics," Lap Chip, Vol. 13, pp. 2834-2839.
DOI
|
3 |
Wang, S. Huang, X. Yang, C., 2011, "Mixing Enhancement for High Viscous Fluids in a Microfluidic Chamber," Lap Chip, Vol. 11, pp. 2081-2087.
DOI
|
4 |
Nguyen, N.-T. Wu, Z., 2005, "Micromixers-a Review," J. Micromech. Microeng., Vol. 15(2), pp. R1-R16.
DOI
|
5 |
Wang, J. Jiao, N. Tung, S. Liu, L., 2014, "Magnetic Microrobot and Its Application in a Microfluidic System," Robotics Biomim., Vol. 1(1), pp. 1-8.
DOI
|
6 |
Mensing, G. A. Pearce, T. M. Graham, M. D. Beebe, D. J., 2004, "An Externally Driven Magnetic Microstirrer," Philos. Trans. Math. Phys. Eng. Sci., Vol. 362(1818), pp. 1059-1068.
DOI
|
7 |
Yesin, K. B. Vollmers, K. Nelson, B. J., 2006, "Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields," Int. J. Rob. Res., Vol. 25(5-6), pp. 527-536.
DOI
|
8 |
Nelson, B. J. Kaliakatsos, I. K. Abbott, J. J., 2010, "Microrobots for Minimally Invasive Medicine," Annu. Rev. Biomed. Eng., Vol. 12, pp. 55-85.
DOI
|
9 |
Niu, X. Liu, L. Wen, W. Sheng, P., 2006, "Active Microfluidic Mixer Chip," Appl. Phys. Lett., Vol. 88(15), p. 153508.
DOI
|
10 |
Nichols, M. Townsend, N. Scarborough, P. Rayner, M., 2014, "Cardiovascular Disease in Europe 2014: Epidemiological Update," Eur. Heart J., Vol. 35(42), pp. 2950-2959.
DOI
|
11 |
Saito, S. Tanaka, S. Hiroe, Y. Miyashita, Y. Takahashi, S. Satake, S. Tanaka, K., 2003, "Angioplasty for Chronic Total Occlusion by Using Tapered-tip Guidewires," Catheter. Cardiovasc. Interv., Vol. 59(3), pp. 305-311.
DOI
|
12 |
Allen, T. M. Cullis, P. R. 2004, "Drug Delivery Systems: Entering the Mainstream," Science, Vol. 303(5665), pp. 1818-1822.
DOI
|
13 |
Ferrara, K. Pollard, R. Borden, M., 2007, "Ultrasound Microbubble Contrast Agents: Fundamentals and Application to Gene and Drug Delivery," Annu. Rev. Biomed. Eng., Vol. 9, pp. 415-447.
DOI
|
14 |
Zhang, Y. Chan, H. F. Leong, K. W., 2013, "Advanced Materials and Processing for Drug Delivery: the Past and the Future," Adv. Drug Deliv. Rev., Vol. 65(1), pp. 104-120.
DOI
|
15 |
Zhou, Y. Sitti, M., 2014, "Dynamic Trapping and Two-dimensional Transport of Swimming Microorganisms Using a Rotating Magnetic Microrobot," Lab Chip, Vol. 14, pp. 2177-2182.
DOI
|
16 |
Ghanbari, A. Bahrami, M., 2011, "A Novel Swimming Microrobot Based on Artificial Cillia for Biomedical Applications," J. Intell. Robot Syst., Vol. 63(3-4), pp. 399-416.
DOI
|
17 |
Chen, B. Jiang, S. Liu, Y. Yang, P. Chen, S., 2010, "Research on the Kinematic Properites of a Sperm-Like Swimming Micro Robot," J. Bio. Engine., Vol. 7, pp. S123-S129.
DOI
|
18 |
Sudo, S. Segawa, S. Honda, T., 2006, "Magnetic Swimming Mechanism in a Viscous Liquid," J Intell Mater Syst Struct., Vol. 17(8-9), pp. 729-736.
DOI
|
19 |
Sahari, A. Headen, D. Behkam, B., 2012, "Effect of Body Shape on the Motile Behavior of Bacteria-Powered Swimming Microrobot (BacteriaBots)," Biomed Microdevices, Vol. 14, pp. 999-1007.
DOI
|
20 |
Zhang, L. Abbott, J. J. Dong, L. Peyer, K. E. Kratochvil, B. E. Zhang, H. ... Nelson, B. J., 2009, "Characterizing the Swimming Properties of Artificial Bacterial Flagella," Nano Lett., Vol. 9(10), pp. 3663-3667.
DOI
|
21 |
Lee, K. Y. Park, S. Lee, Y. R. Chung, S. K., 2016, "Magnetic Droplet Microfluidic System Incorporated with Acoustic Excitation for Mixing Enhancement," Sens. Actuator A-Phys., Vol. 243, pp. 59-65.
DOI
|
22 |
Khatavkar, V. V. Anderson, P. D. Toonder, J. D. Meijer, H. E. H., 2007, "Active Micromixer Based on Artificial Cilia," Physics of Fluids, Vol. 19(8), pp. 083605-1-083605-13.
DOI
|