Browse > Article
http://dx.doi.org/10.5407/JKSV.2014.12.2.013

Optical Manipulation of Droplets in a Microfluidic Platform  

Jung, Jin Ho (KAIST)
Cho, Hyunjun (KAIST)
Ha, Byung Hang (KAIST)
Destgeer, Ghulam (KAIST)
Sung, Hyung Jin (KAIST)
Publication Information
Journal of the Korean Society of Visualization / v.12, no.2, 2014 , pp. 13-17 More about this Journal
Abstract
In the present study, the optofluidic droplet manipulation in a microfluidic platform was demonstrated via theoretical and experimental approaches. Optical scattering force and gradient force were used to separate and trap droplets. Two types of droplets were generated by a T-junction method in the microfluidic channel. While they approach a test region where the optical beam illuminates the droplets, they were pushed by the optical scattering beam. The displacement by the laser beam is dependent on the refractive index of the droplets. By using the optical gradient force, the droplets can be trapped and coalesced. In order to bring the droplets in a direct contact, the optical gradient force was used to trap the droplets. A theoretical modeling of the coalescence was derived by combining the optical force and drag force on the droplet.
Keywords
Droplet; optofluidics; two-phase flow; optical tweezer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Velev, O. D., Prevo, B. G. and Bhatt, K. H. (2003). "On-chip manipulation of free droplets." Nature 426(6966), pp.515-516.   DOI
2 Franke, T., Abate, A. R., Weitz, D. A. and Wixforth, A. (2009). "Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices." Lab Chip 9(18), pp.2625-2627.   DOI
3 Ashkin, A. (1970). "Acceleration and Trapping of Particles by Radiation Pressure." Physical Review Letters 24(4), pp.156-159   DOI
4 Kim, S. B. and Kim, S. S. (2006). "Radiation forces on spheres in loosely focused Gaussian beam: ray-optics regime." Journal of the Optical Society of America B-Optical Physics 23(5), pp.897-903.   DOI
5 van der Sman, R. G. (2010). "Drag force on spheres confined on the center line of rectangular microchannels." J Colloid Interface Sci 351(1), pp.43-49.   DOI
6 Teh, S. Y., Lin, R., Hung, L. H. and Lee, A. P. (2008). "Droplet microfluidics." Lab Chip 8(2), pp.198-220.   DOI   ScienceOn
7 Song, H., Chen, D. L. and Ismagilov, R. F. (2006). "Reactions in droplets in microfluidic channels." Angew Chem Int Ed Engl 45(44), pp.7336-7356.   DOI   ScienceOn
8 Baroud, C. N., de Saint Vincent, M. R. and Delville, J. P. (2007). "An optical toolbox for total control of droplet microfluidics." Lab Chip 7(8), pp.1029-1033.   DOI
9 Christopher, G. F., Bergstein, J., End, N. B., Poon, M., Nguyen, C. and Anna, S. L. (2009). "Coalescence and splitting of confined droplets at microfluidic junctions." Lab Chip 9(8), pp.1102-1109.   DOI   ScienceOn
10 Kintses, B., van Vliet, L. D., Devenish, S. R. A. and Hollfelder, F. (2010). "Microfluidic droplets: new integrated workflows for biological experiments." Current Opinion in Chemical Biology 14(5), pp.548-555.   DOI   ScienceOn