Browse > Article
http://dx.doi.org/10.3365/KJMM.2013.51.11.821

Fabrication and Properties of Nanostructured $3Ti-2Al_2O_3$ Composites by a Pulsed Current Activated Sintering Method  

Park, Na-Ra (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel Cell, Engineering College, Chonbuk National University)
Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel Cell, Engineering College, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.51, no.11, 2013 , pp. 821-828 More about this Journal
Abstract
Nanopowders of $TiO_2$ and Al were prepared from a high energy ball milling method to fabricate sintered $3Ti-2Al_2O_3$ composites with nanostructures. A dense nanocrystalline $3Ti-2Al_2O_3$ composite was consolidated by a pulsed current activated sintering method from the mechanically activated powder. Consolidation of dense $3Ti-2Al_2O_3$ composites with a relative density of up to 99% was accomplished under the combined contribution of a pulsed current and a mechanical pressure of 60 MPa. The hardness and fracture toughness of the fabricated composites were 1207 kg/mm2 and $7 MPa{\cdot}m^{1/2}$, respectively.
Keywords
composite; $3Ti-2Al_2O_3$; sintering; nanomaterials; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M. Niinomi, Mater. Sci. Eng. A 243, 231 (1998).   DOI
2 M. N. Rahaman and A. Yao, J. Am. Ceram. Soc. 90, 1965 (2007).   DOI
3 Y. Okazaki, K. Kyo, Y. Ito, and T Tateishi, J. Japan Inst. Metals 10, 1061 (1995).
4 T. Ahmed, M. Long, J. Siverstri. C. Ruiz, and H. J. Rack, A new modulus, biocompatible titanium alloy, Titanium 95 science and technology, 2, 1760 (1995).
5 G. Farrar, Lancet 335, 747 (1990).   DOI
6 J. P. Landsberg, Nature 360, 65 (1992).   DOI
7 Ratner, Joffman, Schoen, Lemons, Biomaterials science, academic Press (1996).
8 S. G. Steinemann, Corrosion of surgical Implants in-vivo and on-vitro Tests, Evaluation of Biomaterials, John Wiley & Sons Ltd., 1 (1980).
9 S. Yumoto, Internation Journal of PIXE 4, 493 (1992).
10 J. A. Davidson, A. K. Mishira, and R. A. Poggie, Biomed. Mat. Eng. 4, 231 (1994).
11 L. L. Hench and J. Wilson, An Introduction to Bioceramics, World Scientific, London (1993).
12 P. Boutin, Presse Med. 79, 639 (1971).
13 J. Karch, R. Birringer, and H. Gleiter. Nature 330, 556 (1987).   DOI
14 A. M. George, J. Iniguuze, L. Bellaiche, Nature 413, 54 (2001).   DOI
15 D. Hreniak, W. Strek, J. Alloys Comp. 341, 183 (2002).   DOI
16 Z. Fang and J. W. Eason, Int. J. Refrac. 13, 297 (1995).   DOI
17 A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 383, 229 (2004).   DOI
18 N. R. Park and I. J. Shon, Korean J. Met. Mater. 50, 961 (2012).
19 I. J. Shon, I. Y. Ko, H. S. Kang, K. T. Hong, J. M. Doh, and J. K. Yoon, Met. Mater. Int. 18, 115 (2012).   DOI
20 H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. I. Shon, Met. Mater. Int. 17, 57 (2011).   DOI
21 W. Kim, N. R. Kim, I. Y. Ko, S. W. Cho, J. S. Park, and I. J. Shon, Met. Mater. Int. 17, 239 (2011).   DOI
22 J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004).   DOI
23 C. Suryanarayana and M. G. Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
24 Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).   DOI
25 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004).   DOI
26 J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).   DOI
27 K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).
28 X. Q. Chen, C. L. Fu, and J. R. Morris, Intermetallics 18, 998 (2010).   DOI
29 M. N. Rahaman, A. Yao, B. S. Bal, J. P. Garino, and M. D. Ries, J. Am. Ceram. Soc. 7, 1965 (2007).