Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.5.401

Bio-applicable Ti-based Composites with Reduced Image Distortion Under High Magnetic Field  

Kim, Sung-Chul (Department of Materials Science and Engineering, Korea University)
Kim, Yu-Chan (Biomedical Research Institute, Korea Institute of Science and Technology)
Seok, Hyun-Kwang (Biomedical Research Institute, Korea Institute of Science and Technology)
Yang, Seok-Jo (College of Engineering, Chungnam National University)
Shon, In-Jin (Division of Advanced Materials Engineering, Chonbuk National University)
Lee, Kang-Sik (Department of Orthopedic Surgery, ASAN Medical Center)
Lee, Jae-Chul (Department of Materials Science and Engineering, Korea University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.5, 2012 , pp. 401-406 More about this Journal
Abstract
When viewed using a magnetic resonance imaging (MRI) system, invasive materials inside the human body, in many cases, severely distort the MR image of human tissues. The degree of the MR image distortion increases in proportion not only to the difference in the susceptibility between the invasive material and the human tissue, but also to the intensity of the magnetic field induced by the MRI system. In this study, by blending paramagnetic Ti particles with diamagnetic graphite, we synthesized $Ti_{100-x}C_x$ composites that can reduce the artifact in the MR image under the high-strength magnetic field. Of the developed composites, $Ti_{70}C_{30}$ showed the magnetic susceptibility of ${\chi}=67.6{\times}10^{-6}$, which corresponds to 30% of those of commercially available Ti alloys, the lowest reported in the literature. The level of the MR image distortion in the vicinity of the $Ti_{70}C_{30}$ composite insert was nearly negligible even under the high magnetic field of 4.7 T. In this paper, we reported on a methodology of designing new structural materials for bio-applications, their synthesis, experimental confirmation and measurement of MR images.
Keywords
biomaterials; powder processing; magnetic properties; SEM; MR image artifact;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. A. Horton and J. R. Bulk, Metallic glass medical instruments, implants, and methods of using same, United States Patent Application Publication, #US 2002/0162605 A1 (2002).
2 B. Muller-Bierl, H. Graf, G. Steidle, and F. Schick, Med. Phys. 32, 76 (2005).   DOI   ScienceOn
3 Y. Gao, K. Muramatsu, A. Kushibe, K. Yamazaki, A. Chiba, and T. Yamanoto, IEEE. Trans. Magn. 45, 4837 (2009).   DOI
4 W. Daum, Controlled-artifact magnetic resonance instruments, United States Patent, #5,895,401 (1999).
5 A. A. Iversen, MRI-compatible surgical instruments, United States Patent Application Publication, #US 2004/ 0152968 A1 (2004).
6 Suyalatu, N. Nomura, K. Oya, Y. Tanaka, R. Kondo, H. Doi, Y. Tsutsumi, and T. Hanawa, Acta Biomater. 6, 1033 (2010).   DOI   ScienceOn
7 J. F. Schenck, Med. Phys. 23, 815 (1996).   DOI   ScienceOn
8 S. POSSE and W. P. Aue, J. Magn. Reson. 88, 473 (1990).
9 B. Raphael, A. H. Haims, J. S. Wu, L. D. Katz, L. M. White, and K. Lynch, AJR. 186, 1771 (2006).   DOI   ScienceOn
10 J. Olsrud, J. Latt, S. Brockstedt, B. Romner, and I. M. Bjorkman-burtscher, J. Magn. Reson. 22, 433 (2005).   DOI   ScienceOn
11 P. Stradiotti, A. Curti, G. Castellazzi, and A. Zerbi, Eur. Spine. J. 18, S102 (2009).   DOI   ScienceOn
12 I. Y. Ko, H. S. Kang, J. M. Doh, J. K. Yoon, and I. J. Shon, J. Alloys and Compounds. 502, L10 (2010).   DOI   ScienceOn
13 W. C. Lee and S. L. Chung, J. Mater. Sci. 30, 1487 (1995).   DOI   ScienceOn
14 S. Z. Nazarova and A. I. Gusev, J. Structural Chem. 42, 470 (2001).   DOI   ScienceOn
15 F. E. Escalas, J. Galante, and W. Rostoker, J. Biomed. Mater. Res. 10, 175 (1976).   DOI   ScienceOn
16 M. Brama, N. Rhodes, J. Hunt, A. Ricci, R. Teghil, S. Migliaccio, C. D. Rocca, S. leccisotti, A. Lioi, M. Scandurra, G. D. Maria, D. Ferro, F. Pu, G. panzini, L. Politi, and R. Scandurra, Biomaterials. 28, 595 (2007).   DOI   ScienceOn