Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.4.263

Mechanical Properties of Forged Nimonic 80A Superalloy Fabricated by Vacuum Spray Casting  

Lee, Yun-Soo (School of Materials Science and Engineering, Inha University)
Hyun, Soong-Keun (School of Materials Science and Engineering, Inha University)
Jung, Dae-Hyun (Technical Research Laboratories, Glometal Co. Ltd.)
Byun, Joong-Sig (Technical Research Laboratories, Glometal Co. Ltd.)
Publication Information
Korean Journal of Metals and Materials / v.50, no.4, 2012 , pp. 263-270 More about this Journal
Abstract
This study investigates the effect of heat treatment on the mechanical properties of a forged Ni-based superalloy called Nimonic 80A. Nimonic 80A ingot samples were fabricated by vacuum spray casting to achieve a fine and homogenized microstructure. The ingot samples were subsequently hot-forged with the diameter of 220 mm at 1373 K. From the center to the surface of the forged Nimonic 80A, its average grain size decreased and its micro-Vickers hardness increased slightly. Solution treatment was carried out at 1353 K with 8 hours of air cooling followed by aging treatment, which was carried out in the range of 873-1073 K with various times from 0.5 to 256 hours. To set the optimum aging conditions, micro-Vickers hardness tests were performed. The maximum hardness value of 388.0 Hv was obtained by aging at 973 K for 32 hours. Also, tensile tests were performed for optimum aging conditions at room temperature and 873 K. The results can be used effectively to perform reasonable heat treatment of Nimonic 80A superalloy.
Keywords
nimonic 80A; aging; mechanical properties; hardness test; vacuum spray casting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Tian, G. A. Zickler, C. Lind, and O. Paris, Acta Mater. 51, 4149 (2003).   DOI   ScienceOn
2 N. D'Souza, R. Beanland, C. Hayward, and H. B. Dong, Acta Mater. 59, 1003 (2011).   DOI   ScienceOn
3 C. S. Han, C. H. Chun, and S. O. Han, J. Kor. Inst. Met. & Mater. 47, 11 (2009).
4 Y. S. Na, I. S. Kim, S. M. Sohn, and N. K. Park, J. Kor. Inst. Met. & Mater. 37, 7 (1999).
5 A. M. Brass, D. Roux, and J. Chene, Mater. Sci. Eng. A 323, 97 (2002).   DOI   ScienceOn
6 K. Kakhi, Mater. Sci. Eng. A 278, 135 (2000).   DOI   ScienceOn
7 K. G. Satyanarayana, S. N. Ojha, D. N. N. Kumar, and G. V. S. Sastry, Mater. Sci. Eng. A 304, 627 (2001).
8 K. H. Baik, H. S. Kang, and H. K. Seok, J. Kor. Inst. Met. & Mater. 44, 329 (2006).
9 A. K. Srivastava, R. C. Anandani, A. Dhar, and A. K. Gupta, Mater. Sci. Eng. A 304, 587 (2001).
10 A. K. Srivastava, V. C. Srivastava, A. Gloter, and S. N. Ojha, Acta Mater. 54, 1741 (2006).   DOI   ScienceOn
11 T. Arai and S. Harper, Heat Treating. In:Metals Handbook Vol. 4, 796 ASM International, Metals Park, OH (1991).
12 B. Cantor, K.H. Baik, and P.S. Grant, Prog. Mater. Sci. 42, 373 (1997).   DOI   ScienceOn
13 D. H. Chang and S. I. Kang, Trans. of the KSME(A) 22, 767 (1998).
14 J. W. Brooks, Mater. Des. 21, 297 (2000).   DOI   ScienceOn
15 C. Stocker, M. Zimmermann and H. J. Christ, Int. J. Fatigue 33, 2 (2011).   DOI   ScienceOn
16 M. V. Nathal, Metall. Trans. A 18, 1961 (1987).   DOI   ScienceOn
17 Y. H. Park, Y. H. Park, I. M. Park, and K. M. Cho, Korean J. Met. Mater. 48, 957 (2010).
18 Y. Xu, Q. Jin, X. Xiao, X. Cao, G. Jia, Y. Zhu, and H. Yin, Mater. Sci. Eng. A 528, 4600 (2011).   DOI   ScienceOn
19 B. H. Kear and H. G. F. Wilsdorf, Trans. metall. Soc. AIME 224, 382 (1962).
20 K. B. Rao, V. Seetharaman, S. L. Mannan and P. Rodriguez, J. Nucl. Mater. 102, 7 (1981).   DOI   ScienceOn
21 H. S. Jeong, J. R. Cho, and H. C. Park, J. Mater. Process. Technol. 162, 504 (2005).
22 S. Zhao, X. Xie, G. D. Smith, and S. J. Patel, Mater. Sci. Eng. A 355, 96 (2003).   DOI   ScienceOn
23 A. Zielinski, H. Smolenska, W. Serbinski, W. Konczewicz, and A. Klimpel, J. Mater. Process. Technol. 164, 958 (2005).
24 D. K. Kim, D. Y. Kim, S. H. Ryu, and D. J. Kim, J. Mater. Process. Technol. 133, 148 (2001).
25 S. H. Kim, J. O. Ham, Y. B. Yun, and N. K. Park, J. Kor. Inst. Met. & Mater. 35, 1244 (1997).