Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.2.183

Hydrogen Generation through the Reaction with Water of MgO, MgCl2 or Ni+Nb2O5 - Added Magnesium Hydrides  

Hong, Seong-Hyeon (Powder Materials Technology Group, KIMS, Korea Institute of Machinery and Materials)
Kim, Hyun-Jin (Powder Materials Technology Group, KIMS, Korea Institute of Machinery and Materials)
Song, Myoung Youp (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Hydrogen & Fuel Cell Research Center Engineering Research Institute, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.2, 2012 , pp. 183-190 More about this Journal
Abstract
Hydrogen was generated by the reaction of metal hydride with water. The variation of hydrogen generation with the kind of powders (milled $MgH_2$, and $MgH_2$ milled with various contents of MgO, $MgCl_2$ or $Ni+Nb_2O_5$) was investigated. $MgH_2$ powder with a hydrogen content of 6.05 wt% from Aldrich Company was used. Hydrogen is generated by the reaction of Mg as well as $MgH_2$ with water, resulting in the formation of byproduct $Mg(OH)_2$. For about 5 min of reaction time, milled $95%MgH_2+5%MgO$ has the highest hydrogen generation rate among milled $MgH_2+x%MgO$ (x=0, 5, 10, 15 and 20) samples. Milled $90%MgH_2+10%MgCl_2$ has the highest hydrogen generation rate among all the samples.
Keywords
hydrogen absorbing materials; mechanical allaying/milling; X-ray diffraction; surface properties; hydrogen generation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
2 K. D. Park and J. S. Han, Korean J. Met. Mater. 49, 945 (2011).
3 K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011).   DOI   ScienceOn
4 S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011).   DOI
5 H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, and M. Ni, Renewable and Sustainable Energy Reviews 13, 845 (2009).   DOI   ScienceOn
6 D. Belitskus, J. Electrochem. Soc. 117, 1097 (1970).   DOI
7 L. Soler, J. Macanas, M. Munoz, J. Casado, J. Power Sources 169, 144 (2007).   DOI   ScienceOn
8 J. Y. Uan, C. Y. Cho, and K. T. Liu, Int. J. Hydrogen Energy 32, 2337 (2007).   DOI   ScienceOn
9 J. Y. Uan, S. H. Yu, M. C. Lin, L. F. Chen, and H. I. Lin, Int. J. Hydrogen Energy 34, 137 (2009).
10 J. Y. Uan, M. C. Lin, C. Y. Cho, K. T. Liu, and H. I. Lin, Int. J. Hydrogen Energy 34, 1677 (2009).   DOI   ScienceOn
11 M. H. Grosjean, M. Zidoune, J. Y. Huot, and L. Roue, Int. J. Hydrogen Energy 31, 1159 (2006).   DOI   ScienceOn
12 M. H. Grosjean, M. Zidoune, L. Roue, and J. Y. Huot, Int. J. Hydrogen Energy 31, 109 (2006).   DOI   ScienceOn
13 H. Wang, L. Han, H. Hu, and D. O. Northwood, J. Alloys Compd. 470, 539 (2009).   DOI   ScienceOn