Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.12.949

Development of MgH2-Ni Hydrogen Storage Alloy Requiring No Activation Process via Reactive Mechanical Grinding  

Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
Kwak, Young Jun (Department of Materials Engineering, Graduate School, Chonbuk National University)
Lee, Seong Ho (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.12, 2012 , pp. 949-953 More about this Journal
Abstract
$MgH_2$ was employed as a starting material instead of Mg in this work. A sample with a composition of 94 wt% $MgH_2-6$ wt% Ni (called $MgH_2-6Ni$) was prepared by reactive mechanical grinding. The hydriding and dehydriding properties were then examined. An $MgH_2-Ni$ hydrogen storage alloy that does not require an activation process was developed. The alloy was prepared in a planetary ball mill by grinding for 4 h at a ball disc revolution speed of 250 rpm under a hydrogen pressure of about 12 bar. The sample absorbed 3.74 wt% H for 5 min, 4.07 wt% H for 10 min, and 4.41 wt% H for 60 min at 573 K under 12 bar $H_2$, and desorbed 0.93 wt% H for 10 min, 1.99 wt% H for 30 min, and 3.16 wt% H for 60 min at 573 K under 1.0 bar $H_2$. $MgH_2-6Ni$ after reactive mechanical grinding contained ${\beta}-MgH_2$ (a room temperature form of $MgH_2$), Ni, ${\gamma}-MgH_2$ (a high pressure form of $MgH_2$), and a very small amount of MgO. Reactive mechanical grinding of Mg with Ni is considered to facilitate nucleation, and to reduce the particle size of Mg. $Mg_2Ni$ formed during reactive mechanical grinding also increases the hydriding and dehydriding rates of the sample.
Keywords
hydrogen absorbing materials; mechanical alloying/milling; microstructure; X-ray diffraction; starting material $MgH_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
2 S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011).   DOI
3 K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011).   DOI   ScienceOn
4 J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).   DOI
5 J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968).   DOI
6 E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982).   DOI   ScienceOn
7 M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978).   DOI   ScienceOn
8 H. C. Zhong, H. Wang, L. Z. Ouyang, and M. Zhu, J. Alloys Compd. 509, 4268 (2011).   DOI   ScienceOn
9 Z. Li, X. Liu, L. Jiang, and S. Wang, Int. J. Hydrogen Energy 32, 1869 (2007).   DOI   ScienceOn
10 M. Y. Song, S. N. Kwon, S. H. Hong, and H. R. Park, Met. Mater. Int. 18, 279 (2012).   DOI   ScienceOn
11 J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983).   DOI   ScienceOn
12 M. Lucaci, Al. R. Biris, R. L. Orban, G. B. Sbarcea, and V. Tsakiris, J. Alloys Compd. 488, 163 (2009).   DOI   ScienceOn
13 Z. Li, X. Liu, Z. Huang, L. Jiang, and S. Wang, Rare Metals 25 (Supplement 1), 247 (2006).   DOI
14 S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 571 (2011).   DOI   ScienceOn
15 Y. H. Cho, S. Aminorroaya, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 4984 (2011).   DOI   ScienceOn
16 C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, and A. Marini, Intermetallics 18, 203 (2010).   DOI   ScienceOn
17 B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976).   DOI   ScienceOn
18 F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan II I, J. Less-Common Met. 74, 323 (1980).   DOI   ScienceOn
19 M. Y. Song, J. Mater. Sci. 30, 1343 (1995).   DOI   ScienceOn
20 M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985).   DOI   ScienceOn
21 M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987).   DOI   ScienceOn
22 M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995).   DOI   ScienceOn
23 J. L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000).   DOI   ScienceOn
24 M. Y. Song, D. S. Ahn, I. H. Kwon, and H. J. Ahn, Met. Mater. Int. 5, 485 (1999).   DOI